im钱包官网下载
数字资产服务平台

im钱包官网下载是全球著名的数字资产交易平台之一,主要面向全球用户提供比特币、莱特币、以太币等数字资产的币币和衍生品交易服务。

tokenpocket最新官方下载|ethernet总线网采用的是()协议

时间:2024-03-14 19:53:25

一文读懂Profibus、Profinet、Ethernet的区别 - 知乎

一文读懂Profibus、Profinet、Ethernet的区别 - 知乎首发于电气工控自动化切换模式写文章登录/注册一文读懂Profibus、Profinet、Ethernet的区别gk-auto工控课堂网创始人-电气工控自动化行业专家Ethernet(以太网络)是大家很熟悉的一种网络了,由Xerox公司创建并由Xerox、Intel和DEC公司联合开发的基带局域网规范,是当今现有局域网采用的最通用的通信协议标准,包括标准的以太网(10Mbit/s)、快速以太网(100Mbit/s)和10G(10Gbit/s)以太网。PROFIBUS,是一种国际化、开放式、不依赖于设备生产商的现场总线标准。PROFIBUS传送速度可在 9.6kbaud~12Mbaud范围内选择且当总线系统启动时,所有连接到总线上的装置应该被设成相同的速度。广泛适用于制造业自动化、流程工业自动化和楼宇、交通电力等其他领域自动化。PROFIBUS是一种用于工厂自动化车间级监控和现场设备层数据通信与控制的现场总线技术。可实现现场设备层到车间级监控的分散式数字控制和现场通信网络,从而为实现工厂综合自动化和现场设备智能化提供了可行的解决方案。PROFINET=PROFIbus+etherNET,把Profibus的主从结构移植到以太网上,所以profinet会有Controller和Device,他们的关系可以简单的对应于profibus的Master和Slave,当然,是有区别的,但这样对应可以有助于理解。另外由于profinet是基于以太网的,所以可以有以太网的星型、树形、总线型等拓扑结构,而profibus只有总线型。所以profinet就是把profibus的主从结构和ethernet的拓扑结构相结合的产物,其他像等时性等西门子鼓吹的特性其实以太网也有,只不过profinet由于有Controller这样的控制单元可以提高等时性的精度而已。PROFINET 是一种新的以太网通讯系统,是由西门子公司和Profibus 用户协会开发。 PROFINET 具有多制造商产品之间的通讯能力,自动化和工程模式,并针对分布式智能自动化系统进行了优化。其应用结果能够大大节省配置和调试费用。 PROFINET 系统集成了基于 Profibus 的系统,提供了对现有系统投资的保护。它也可以集成其它现场总线系统。PROFINET 是一种支持分布式自动化的高级通讯系统。除了通讯功能外,PROFINET 还包括了分布式自动化概念的规范,这是基于制造商无关的对象和连接编辑器和 XML 设备描述语言。以太网 TCP/IP 被用于智能设备之间时间要求不严格的通讯。所有时间要求严格的实时数据都是通过标准的 Profibus DP 技术传输,数据可以从Profibus DP 网络通过代理集成到 PROFINET 系统。 PROFINET 是唯一使用已有的 IT 标准,没有定义其专用工业应用协议的总线。它的对象模式的是基于微软公司组件对象模式 (COM) 技术。对于网络上所有分布式对象之间的交互操作,均使用微软公司的DCOM 协议和标准 TCP 和 UDP 协议。在 PROFINET 概念中,设备和工厂被分成为技术模块,每个模块包括机械、电子和应用软件。这些组件的应用软件可使用专用的编程工具进行开发并下载到相关的控制器中。这些专用软件必须实现 PROFINET 组件软件接口,能够将 PROFINET 对象定义导出为 XML 语言。 XML 文件用于输入制造商无关的 PROFINET 连接编辑器来生成PROFINET 元件。连接编辑器对网络上 PROFINET 元件之间的交换操作进行定义。最终,连接信息通过以太网 TCP-IP 下载到 PROFINET 设备中。PROFINET(实时以太网)基于工业以太网,具有很好的实时性,可以直接连接现场设备(使用PROFINETIO),使用组件化的设计,PROFINET支持分布的自动化控制方式(PROFINET CBA,相当于主站间的通讯).以太网应用到工业控制场合后,经过改进使用于工业现场的以太网,就成为工业以太网。如果你曾经使用过西门子的网卡CP343-1或CP443-1通讯的话,可能应用过ISO或TCP连接等。这样所使用的TCP和ISO就是应用在工业以太网上的协议。PROFINET同样是西门子SIMATIC NET中的一个协议,具体说是众多协议的集合,其中包括PROFINET IO RT, CBA RT, IO IRT等等的实时协议。所以说PROFINET和工业以太网不能比,只能说PROFINET是工业以太网上运行的实时协议而以。不过现在常常称有些网络是PROFINET网络,那是因为这个网络上应用了PROFINET协议而已。PROFINET基于工业以太网,而PROFIBUS基于RS485串行总线,两者协议上由于介质不同完全不同,没有任何关联。两者相似的地方都具有很好的实时性,原因在于都使用了精简的堆栈结构。基于标准以太网的任何开发都可以直接应用在PROFINET网络中,世界上基于以太网的解决方案的开发者远远多于PROFIBUS开发者,所以,有更多的可用资源去创新技术。对于PROFIBUS,数据传输的带宽最大为12Mbps,对于PROFINET,数据传输的带宽为100Mbps。对于PROFIBUS,数据传输的方式为半双工,对于PROFINET,数据传输的方式为全双工。对于PROFIBUS,一致性数据最大为32bytes,对于PROFINET,一致性数据最大为254bytes。对于PROFIBUS,用户数据的最大为244bytes,对于PROFINET,用户数据的最大为1400bytes。对于PROFIBUS,12Mbps的最大总线长度为100m,对于PROFINET,设备之间的总线长度为100m。对于PROFIBUS,组态和诊断需要专门的接口模板,例如CP5512,对于PROFINET,可以使用标准的以太网网卡。对于PROFIBUS,需要特殊的工具进行网络诊断,对于PROFINET,使用IT相关的工具即可。对于PROFIBUS,总线上的主要故障来源于总线终端电阻不匹配或者较差的接地,对于PROFINET,不需要总线终端电阻。发布于 2019-06-01 21:46可编程逻辑控制器(PLC)​赞同 76​​2 条评论​分享​喜欢​收藏​申请转载​文章被以下专栏收录电气工控自动化电气工控自动化,专业专注

接口协议(四):以太网(Ethernet)学习(一):协议_以太网 标准寄存器-CSDN博客

>

接口协议(四):以太网(Ethernet)学习(一):协议_以太网 标准寄存器-CSDN博客

接口协议(四):以太网(Ethernet)学习(一):协议

最新推荐文章于 2024-02-05 12:03:18 发布

QNee

最新推荐文章于 2024-02-05 12:03:18 发布

阅读量4.4w

收藏

455

点赞数

79

分类专栏:

接口协议

文章标签:

以太网

协议

接口

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。

本文链接:https://blog.csdn.net/qq_40483920/article/details/108262953

版权

接口协议

专栏收录该内容

8 篇文章

50 订阅

订阅专栏

目录

一、以太网二、网络模型三、以太网数据包格式以太网帧格式

三、TCP/IP协议簇1、IP协议2、UDP协议

因为没有做过以太网的项目,也没有进行过以太网通信测试,本片博客仅仅是对以太网协议极小一部分的学习了解。如有不当之处,还请指正。

一、以太网

以太网是一种产生较早,使用相当广泛的局域网技术,局域网就是一个区域的网络互联,可以使办公室也可以是学校等等,大小规模不一。 最初是由Xerox(施乐)公司创建(大概是1973年诞生)并由Xerox、 Intel和DEC公司联合开发的基带局域网规范,后来被电气与电子工程师协会( IEEE)所采纳作为802.3的标准。

目前以太网根据速度等级分类大概分为:标准以太网(10Mbit/s),快速以太网(100Mbit/s),千兆以太网(1000Mbit/s),以及更快的万兆以太网(10Gbit/s)。但在平常使用中,快速以太网和千兆以太网已经足够了。

因为以太网通信不是像蓝牙那样无限通信,而是通过连接线进行通信,所以以太网接发双方都会有接口。以太网接口类型有RJ45接口,RJ11接口(电话线接口),SC光纤接口。其中RJ45接口使我们最常用的以太网接口(电脑接口)。

RJ45接口也称为水晶头,由插头和插座组成 可以看到,RJ45接口和HDMI等接口一样,也是采用差分数据传输,这种传输有抗干扰能力强的特性(这在高速数据传输中很重要)。

以太网常用于大型数据传输(如:视频数据),以太网也叫以太网协议,就是一种传输规则,发收双方必须遵守这种规则才能正确地进行数据传输和接收。 以太网通信是以数据包的形式传输, 其单包数据量达到几十, 甚至成百上千个字节。

二、网络模型

也有将TCP/IP分为四层的模型

而我们在使用FPGA设计以太网传输时,基本只需要考虑数据发送,即只需要考虑设计物理层,也就是生成比特流。 如果是进行网络系统设计,就需要考虑各种接口(应用层),方便用户等调用。

三、以太网数据包格式

可以看到,我们一帧能发送的真正的数据内容为:18-1472 Byte;然后将用户数据添加UDP首部,形成UDP层;再加上IP首部,形成IP层;最后加上前导码、SFD(帧起始界定符)、以太网帧头、以及FCS(帧检验序列),构成了MAC层(物理层,包括源MAC地址和目的MAC地址),也就是最终需要在通信线路上传输的数据。

在设计物理层时,只需要计算得到各个首部、前导码、起始界定符、以及校验,就可以得到物理层,然后进行传输。

以太网帧格式

摘自《开拓者FPGA开发指南》

前导码( Preamble) : MAC物理层使用7个字节同步码( 0和1交替( 55-55-55-55-55-55-55))实现数据的同步。

帧起始界定符( SFD, Start Frame Delimiter):使用1个字节的SFD(固定值为0xd5)来表示一帧的开始,后面紧跟着传输的就是以太网的帧头。

目的MAC地址: 即接收端物理MAC地址,占用6个字节。 MAC地址从应用上可分为单播地址、组播地址和广播地址。单播地址:第一个字节的最低位为0,比如00-00-00-11-11-11,一般用于标志唯一的设备;组播地址:第一个字节的最低位为1,比如01-00-00-11-11-11,一般用于标志同属一组的多个设备;广播地址:所有48bit全为1,即FF-FF-FF-FF-FF-FF,它用于标志同一网段中的所有设备。 源MAC地址:即发送端物理MAC地址,占用6个字节。

长度/类型: 上图中的长度/类型具有两个意义,当这两个字节的值小于1536(十六进制 为0x0600)时,代表该以太网中数据段的长度;如果这两个字节的值大于1536,则表示该以太网中的数据属于哪个上层协议,例如0x0800代表IP协议( 网际协议) 、 0x0806代表ARP协议(地址解析协议)等。

数据:以太网中的数据段长度最小46个字节, 最大1500个字节。最大值1500称为以太网的最大传输单元( MTU, Maximum Transmission Unit),之所以限制最大传输单元是因为在多个计算机的数据帧排队等待传输时,如果某个数据帧太大的话,那么其它数据帧等待的时间就会加长,导致体验变差,这就像一个十字路口的红绿灯,你可以让绿灯持续亮一小时,但是等红灯的人一定不愿意的。另外还要考虑网络I/O控制器缓存区资源以及网络最大的承载能力等因素, 因此最大传输单元是由各种综合因素决定的。为了避免增加额外的配置, 通常以太网的有效数据字段小于1500个字节。

帧检验序列( FCS, Frame Check Sequence) : 为了确保数据的正确传输, 在数据的尾部 加入了4个字节的循环冗余校验码( CRC校验) 来检测数据是否传输错误。 CRC数据校验从以太 网帧头开始即不包含前导码和帧起始界定符。 通用的CRC标准有CRC-8、 CRC-16、 CRC-32、 CRCCCIT,其中在网络通信系统中应用最广泛的是CRC-32标准。

帧间隙( IFG,Interpacket Gap) :就是以太网相邻两帧之间的时间间隔,帧间隙的时间就是网络设备和组件在接收一帧之后,需要短暂的时间来恢复并为接收下一帧做准备的时间, IFG的最小值是96 bit time,即在媒介中发送96位原始数据所需要的时间,在不同媒介中IFG的最小值是不一样的。

三、TCP/IP协议簇

TCP( 传输控制协议) /IP(网际协议)协议簇,虽然看上去TCP/IP协议簇只有两个协议,其实TCP/IP协议簇包含了上百种协议,最常用的有TCP、IP、UDP等。其中TCP协议和UDP协议应用最广泛。

1、IP协议

IP协议是TCP/IP协议簇中的核心协议,所有的TCP、 UDP及ICMP数据都以IP数据报格式传输。

从以太网数据包格式中可以看出,IP数据报 包括IP首部和数据段。 IP数据报内容 版本:4位版本号,IPv4(0100),IPv6(0110),目前在以太网使用IPv4多,但是在计算机系统中,IPv6也已经流行起来,因为IPv4仅用32个bit来表示地址,IPv4 地址的总数为 4294967296,到现在,已经快用光了;而IPv6使用128bit来表示地址,理论来说根本用不完。

首部长度:4位,表示IP首部一共有多少个32位(4Byte),假设无可选字段(一般来说没有),IP首部有20个Byte,则首部长度为5;最大为15,即60个Byte。

服务类型:8位,普通服务的话,设置为0。可以参考:IP首部中的服务类型(TOS)

总长度:16位,包括IP首部和IP数据部分,以字节为单位。我们利用IP首部长度和IP数据报总长度,就可以计算出IP数据报中数据内容的起始位置和长度。

标识:16位,通常每发一份报文,就加1。

标志:3位,用来表示分片还是不分片,第一位(最高位)保留,第二位(1-不分片,0-允许分片),第三位为1即表示后面“还有分片”的数据报。为0表示这已是若干数据报片中的最后一个。

叶偏移:13位,在接收方进行数据报重组时用来标识分片的顺序。

生存时间:8位,防止丢失的数据包在无休止的传播,一般被设置为64或者128。IPv6 地址有两个生存期:首选生存期和有效生存期,而首选的生存期总是小于等于有效的生存期。具体可以参考官方文档。

协议:8位,表示此数据报所携带上层数据使用的协议类型,TCP为6, UDP为17。可以参考:IP协议号 IP首部中有8位协议号,用于指明IP的上层协议

首部校验和:这部分需要自己计算,用来校验IP数据报头部是否被破坏、篡改和丢失等,不校验数据。

源MAC地址,目的MAC地址:就是发送和接收IP地址。

可选字段:是数据报中的一个可变长度的可选信息,选项字段以32bit为界,不足时插入值为0的填充字节,保证IP首部始终是32bit的整数倍。

首部校验和计算 1、将16位校验和字段置为0,将IP首部分为多个16位的单元; 2、对各个单元采用反码加法运算 3、假如得到的结果有溢出,则将结果再次分为两个16位相加,直到不出现进位 如下例:

2、UDP协议

在以太网数据包中,我们可以看到,TCP协议(IP层)比UDP层复杂,更为可靠,但是UDP运用场景也非常多。 那为什么不所有传输都用更可靠的TCP协议呢,这就像卖手机,不可能都上最好的配置,毕竟有人不需要这么好的配置,我只需要打电话,一个骁龙835就够了,如果你叫我多花2000块,买一个865,那我没必要。所以这就是需求不同,所以UDP也常用。

TCP与UDP的区别:TCP为可靠传输协议,而UDP为不可靠传输协议;TCP协议可以保证数据的完整和有序,而UDP不能保证;UDP由于不需要连接,故传输速度比TCP快,且占用资源比TCP少;

应用场景:TCP适用于对数据完整性要求很高的场合,比如文件传输;而UDP适用于对数据完整性要求不高的场合,比如说视频直播,毕竟直播的时候少传输几个像素点,影响也不大,而且视频直播要求数据传输很快。而文件数据要是少一个byte或者更多,可能会造成很大的问题。

UDP格式数据 其中的UDP校验和和TCP协议的校验和计算方式一样,但是需要计算三个部分:UDP伪首部、UDP首部、UDP数据部分。

伪首部的数据是从IP数据报头和UDP数据报头获取的,包括源IP地址,目的IP地址,协议类型和UDP长度,其目的是让UDP两次检查数据是否已经正确到达目的地,只是单纯为了做校验用的。在大多数使用场景中接收端并不检测UDP校验和。

优惠劵

QNee

关注

关注

79

点赞

455

收藏

觉得还不错?

一键收藏

知道了

12

评论

接口协议(四):以太网(Ethernet)学习(一):协议

目录一、以太网二、网络模型三、以太网数据包格式以太网帧格式三、TCP/IP协议簇1、IP协议2、UDP协议因为没有做过以太网的项目,也没有进行过以太网通信测试,本片博客仅仅是对以太网协议极小一部分的学习了解。如有不当之处,还请指正。一、以太网以太网是一种产生较早,使用相当广泛的局域网技术,局域网就是一个区域的网络互联,可以使办公室也可以是学校等等,大小规模不一。最初是由Xerox(施乐)公司创建(大概是1973年诞生)并由Xerox、 Intel和DEC公司联合开发的基带局域网规范,后来被电气与电子

复制链接

扫一扫

专栏目录

嵌入式系统以太网接口的实现

01-19

随着微电子技术和计算机技术的发展,嵌入式技术得到广阔的发展,已成为现代工业控制、通信类和消费类产品发展的方向。以太网在实时操作、可靠传输、标准统一等方面的卓越性能及其便于安装、维护简单、不受通信距离限制等优点,已经被国内外很多监控、控制领域的研究人员广泛关注,并在实际应用中展露出显着的优势。

  以太网(Ethernet)是当今局域网采用的通用的通信协议标准。在以太网中,所有计算机被连接在一条电缆上,采用带冲突检测的载波侦听多路访问(CSMA/CD)方法,采用竞争机制和总线拓扑结构。基本上,以太网由共享传输媒体,如双绞线电缆或同轴电缆、多端口集线器、网桥或交换机构成。按照OSI(OpenSys

以太网(Ethenet)协议

qq_39173537的博客

11-08

8267

以太网协议

12 条评论

您还未登录,请先

登录

后发表或查看评论

以太网(Ethernet)协议学习

元直的博客

02-05

53

帧间隙( IFG,Interpacket Gap) :就是以太网相邻两帧之间的时间间隔,帧间隙的时间就是网络设备和组件在接收一帧之后,需要短暂的时间来恢复并为接收下一帧做准备的时间, IFG的最小值是96 bit time,即在媒介中发送96位原始数据所需要的时间,在不同媒介中IFG的最小值是不一样的。那为什么不所有传输都用更可靠的TCP协议呢,这就像卖手机,不可能都上最好的配置,毕竟有人不需要这么好的配置,我只需要打电话,一个骁龙835就够了,如果你叫我多花2000块,买一个865,那我没必要。

以太网完整协议(一)

热门推荐

yundanfengqing_nuc的专栏

05-03

6万+

一、太网中数据帧结构

以太网是目前最流行的一种局域网组网技术(其他常见局域网组网技术还有令牌环局域网、无线局域网、ATM局域网),以太网技术的正式标准是IEEE 802.3标准,它规定了在以太网中传输的数据帧结构,如下图所示。

              

在物理层上看,一个完整的以太网帧有7个字段,事实上,前两个字段并不能算是真正意义上的以太网数据帧,它们是以太网在物理层上发送

GigabitEthernet和Ethernet接口的区别

cheems404的博客

11-11

1万+

设备里面的ethernet是100M接口,gigabitethernet是1000M接口。

ethernet不能配置IP,因为这个接口是二层口,所以不能设置IP。

一、端口速率区别

1、Ethernet0/0/1【以太网端口,10Mbit/s】

2、FastEthernet0/0/1【快速以太网端口,100Mbit/s】

3、GigabitEthernet0/0/1【千兆以太网端口,1000Mbit/s】

二、编码区别

1、Ethernet(传统以太网)采用曼彻特斯编码;

2、Fast Et

STM32的以太网外设+PHY(LAN8720)使用详解(3):PHY寄存器详解

kevin1499的博客

12-22

1847

STM32的以太网外设+PHY(LAN8720)的PHY寄存器详解。

连以太网接口和串口傻傻分不清?看完本文就懂了

Rocky006的博客

06-14

4271

路由器是一种网络设备,它的主要功能是在不同的网络之间转发数据包,实现网络互联。路由器根据数据包的目的地址,选择最佳的路径,将数据包发送到下一跳。路由器可以连接不同的网络类型,如以太网、帧中继、PPP等。路由器上有多种不同的接口,用于连接不同的网络或设备。其中最常见的两种接口是以太网接口和串口。本文就给大家介绍一下以太网接口和串口,让我们直接开始!

以太网协议介绍(ARP、UDP、ICMP、IP)

xzs520xzs的博客

10-02

3138

IP:internet protocol(网际协议)IP协议是TCP/IP协议簇中的核心协议之一,也是TCP/IP协议的载体,IP协议规定了数据传输时的基本单元和格式。所有的TCP、UDP以及ICMP数据都是以IP数据报格式传输的。IP数据报格式:IP首部是以4(32bit)个字节为单位,版本:IPv4 or IPv6;IPv4的地址是4个字节,即为0100,IPv6是6个字节,即0110;

把Ethernet(以太网)基本工作原理说清楚

m0_52733659的博客

11-19

6815

文章目录Ethernet 数据发送流程(1)载波侦听过程(2)冲突检测方法发现冲突、停止发送随机延迟重发Ethernet帧结构Ethernet V2.0标准 和 IEEE 802.3标准的Ethernet帧结构的区别前导码类型字段和长度字段Ethernet帧结构分析目的地址和源地址字段帧校验字段Ethernet接收流程分析Ethernet网卡

“以太”来源于19世纪物理学家解释光在空间中传播的介质:“以太”

以太网采用的介质控制方法是:CSMA/CD(带有冲突检测的载波侦听多路访问)

Etherne

FPGA实现以太网(一)——以太网简介

m0_52889836的博客

12-28

1031

以太网(Ethernet)是当今现有局域网采用的最通用的通信协议标准, 该标准定义了在局域网中采用的电缆类型和信号处理方法。以太网凭借其成本低、通信速率高、抗干扰性强等优点被广泛应用在网络远程监控、 交换机、工业自动化等对通信速率要求较高的场合。以太网是一种产生较早,使用相当广泛的,被电气与电子工程师协会( IEEE)所采纳作为的标准。以太网的分类有标准以太网(10Mbit/s)、 快速以太网(100Mbit/s)和千兆以太网( 1000Mbit/s)。

互联网Internet和以太网Ethernet的区别大家懂,说说看???

无敌兔0x01

12-20

1万+

互联网

互联网(Internet)是一个网络的网络,它是由从地方到全球范围内几百万个私人的,政府的,学术界的,企业的和政府的网络所构成,通过电子,无线和光纤网络技术等等一系列广泛的技术联系在一起。

以太网

以太网(Ethernet)是为了实现局域网通信而设计的一种数据链路层技术,它规定了包括物理层的连线、电子信号和介质访问层协议的内容。以太网是目前应用最普遍的局域网技术,取代了其他局域网标准如令牌...

基于Ethernet 的冗余CAN 总线协议转换器设计

01-19

摘 要:采用Ethernet 接口的CAN 总线协议转换器,可实现通过以太网接口方便地监听CAN 总线上的数据,实现总线数据的收发等功能.文中以单片机C8051F340.以太网接口芯片CP2200 和CAN 总线协议芯片SJA1000 等为硬件平台,设计了一个以太网与CAN 总线的协议转换电路,实现了通过以太网进行CAN 冗余总线的协议分析.总线数据的远程监控等功能.同时采用双通道CAN 总线的冗余设计以提高电路的可靠性,而以太网端口供电的设计,使其具有携带方便.易于操作的特点.该设计已在航天器地面测试设备中得到很好的应用,其性价比高.实用性强的特点,非常适合工业控制领域.

  0 引 言

工业通讯-NETX90多协议通讯芯片

最新发布

02-26

芯片支持多种实时以太网通讯协议(PROINET、EtherCAT、EtherNet/IP、CC-Link IE等)和现场总线通讯协议(PROFIBUS、DeviceNet、CANopen等)。

在netX90 SoC中集成了两个独立的CPU内核,其中一个用于实时工业通讯,另一个供客户做应用程序的开发。CPU 内两个系统之间的数据交换基于统一的一致的API 接口,工业通讯协议栈以可加载固件(LFW)形式提供,经过全面的测试和协议预认证,应用程序软件开发人员能快速的实现驱动的移植和应用程序的开发。

EtherNet/IP 协议结构

weixin_33858336的博客

03-05

1万+

一、Ethernet/IP 协议

将标准的TCP/IP以太网延伸 到工业实时控制并和通用工业协议(CIP)结合,将很好地帮助用户获得更加开放集成的工业自动化和信息化的整体解决方案。EtherNet/IP 就是为实现这一目的的标准工业以太网技术。Ethernet/IP是一个面向工业自动化应用的工业应用层协议。它建立在标准是由ODVA(OpenDeviceNet VendorsAssoci...

以太网基础

四季帆的博客

02-16

436

PHY是IEEE 802.3规定的一个标准模块,PHY芯片的寄存器地址空间是5位,地址空间031共32个寄存器,IEEE定义了015这16个寄存器的功能,16-31这16个寄存器由厂商自行实现。PHY在数据接受时, 进行如上所述的逆操作,将模拟信号转化为数字信号,解码,并行化后,传给MAC。发送数据:对于PHY来说,并没有帧的概念,对它来说,不管是地址、数据还是CRC,都会将并行数据转换为串行数据流,在按照物理层的编码规则把数据编码,最终转换成模拟信号发送出去。

TCP/IP讲座基础篇

weixin_33841722的博客

03-13

851

1:1层,2层,3层?

这篇文章主要是面向自学TCP/IP的读者的.因为市面上讲解计算机网络的书虽然非常多,但是个人认为没有一本可以做到深入浅出的.都是照搬某些权威书籍中的概念,使得很多读者读了之后还是没有具体概念.希望我写的东西可以让大家有个具体概念,而不是只停留在能够背出官方的,严谨的,深奥的概念.

由于本人水平有限,如果你在文章中发现了错误,请立...

计算机网络-数据链路层:以太网协议、ARP协议、MAC、MTU

m0_63020222的博客

12-13

1859

计算机网络-数据链路层:以太网协议、ARP协议、MAC、MTU

网络协议学习之Ethernet II协议(二层)

weixin_43580872的博客

07-23

1万+

网络协议学习之Ethernet II协议简介一、协议1、协议结构2、二、抓包分析总结

简介

    Ethernet II协议位于五层OSI模型中的第二层,属于链路层的协议。

一、协议

1、协议结构

前导包

目的mac地址(DMac)

源mac地址 (SMac)

类型(Type)

数据(Playload)

校验(CRC)

6 Byte 目的地址

6 Byte 源地址

2 Byte

46 ~ 1500 Byte

2、

二、抓包分析

总结

..

以太网接口

weixin_41903639的博客

04-24

3924

以太网接口

以太网接口由 MAC(以太网媒体接入控制器)和 PHY(物理接口收发器)组成。以太网 MAC 由 IEEE 802.3 以太网标准定义,实现了数据链路层。常用的 MAC 支持 10Mbit/s 或100Mbit/s 两种速率。吉比特以太网(也称为千兆位以太网)是快速以太网的下一代技术,将网速提高到了 1000 Mbit/s。千兆位以太网以 IEEE 802.3z 和 802.3ab 发布,作为 IEEE 802.3 标准的补充。

MAC 和 PHY 之间采用 MII(媒体独立接口)连接,它是 I

EtherNet/IP 协议规范

05-13

EtherNet/IP(Ethernet Industrial Protocol)是一种工业以太网协议,它是基于TCP/IP协议并使用以太网作为物理层的开放式工业网络协议。EtherNet/IP协议规范包含以下内容: 1. 介绍:介绍了EtherNet/IP的概念和目标...

“相关推荐”对你有帮助么?

非常没帮助

没帮助

一般

有帮助

非常有帮助

提交

QNee

CSDN认证博客专家

CSDN认证企业博客

码龄6年

暂无认证

48

原创

22万+

周排名

180万+

总排名

37万+

访问

等级

2880

积分

390

粉丝

438

获赞

56

评论

2753

收藏

私信

关注

热门文章

接口协议(四):以太网(Ethernet)学习(一):协议

44812

用viso画时序图(使用步骤)

20478

数字电子技术基础(十三):时序逻辑电路(状态机)(移位寄存器、计数器、信号发生器)

18756

数字电子技术基础(九):竞争—冒险现象成因及消除

17331

数字电子技术基础(十):SR锁存器

15872

分类专栏

时序分析学习

4篇

数字电子技术基础

16篇

接口协议

8篇

FPGA学习笔记

12篇

FPGA/IC笔试面试

1篇

传感器

1篇

Verilog基本语法

2篇

想法随记

1篇

图像处理

2篇

Verilog设计实例

9篇

常用软件使用

1篇

最新评论

小数分频之任意小数分频(二)(占空比50%,时钟抖动较小)

K a L:

up,您好!可以发一下工程代码吗?kai29523970@163.com

用viso画时序图(使用步骤)

2301_77725466:

这画的神魔

数字电子技术基础(四):门电路(CMOS)必看

码到成龚:

为什么当Vds = 0,且Vgs > 0时,栅极金属层将聚集正电荷?

首先要看什么类型的场效应晶体管。

根据产生的结果“栅极聚集正电荷”,可以推断:

1,这种场效应晶体管是N沟道的。

衬底为p型半导体,其多子为空穴,为正电荷,在形成电容器时,通过栅极金属铝和衬底p型半导体,以中间绝缘层二氧化硅作为介质,加上同性相斥,将靠近栅极的衬底多子空穴向下排斥,在中间形成了一薄层的负离子(正电荷减少,负电荷含量增加,为负)耗尽层。

2,[Vgs>0]这种场效应晶体管是增强型的。

如果是耗尽型的,不用Vgs>0,也会有漏极电流。耗尽型和增强型结构上相同,只是在绝缘层二氧化硅里面参入了碱金属(例如钠Na,钾K)正离子,即使在Vgs<0(栅极和沟道pn结反偏),也可以感受到反型层,直接形成导电沟道,如果在漏源之间加一定电压即可生成漏极电流Id。明确表示Vgs大于0的,一般就是增强型mos管,因为如果vgs<0的话,无论在漏源之间施加什么极性的电压,漏源之间都不会有电流产生,即id=0(晶体管不工作)。

3,[Vds=0]我们一般在场效应晶体管中研究最多的是“漏源电压对漏极电流的影响”。当Vgs为固定值,且Vgs(th)>Vgs>0。因为Vgd=Vgs-Vds,且当Vgd=Vgs-Vds=Vgs(th)的时候靠近漏极沟道的部分开始出现预夹断,当Vds=0,即Vgs=Vgs(th)时,沟道全部被夹断,漏极电流为0(Id≈0)。

接口协议(四):以太网(Ethernet)学习(一):协议

m0_64173602:

这不是搬运正点原子的嘛

数字电子技术基础(十):SR锁存器

vivivi12345_:

或非门右边那张图为什么Sd对应Q 不应该是Rd对应Q吗

您愿意向朋友推荐“博客详情页”吗?

强烈不推荐

不推荐

一般般

推荐

强烈推荐

提交

最新文章

门控时钟与时钟使能

流水线设计思想

关于语法、编译器以及设计者的一些看法

2020年48篇

目录

目录

分类专栏

时序分析学习

4篇

数字电子技术基础

16篇

接口协议

8篇

FPGA学习笔记

12篇

FPGA/IC笔试面试

1篇

传感器

1篇

Verilog基本语法

2篇

想法随记

1篇

图像处理

2篇

Verilog设计实例

9篇

常用软件使用

1篇

目录

评论 12

被折叠的  条评论

为什么被折叠?

到【灌水乐园】发言

查看更多评论

添加红包

祝福语

请填写红包祝福语或标题

红包数量

红包个数最小为10个

红包总金额

红包金额最低5元

余额支付

当前余额3.43元

前往充值 >

需支付:10.00元

取消

确定

下一步

知道了

成就一亿技术人!

领取后你会自动成为博主和红包主的粉丝

规则

hope_wisdom 发出的红包

实付元

使用余额支付

点击重新获取

扫码支付

钱包余额

0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。 2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值

以太网(Ethernet) - 知乎

以太网(Ethernet) - 知乎首页知乎知学堂发现等你来答​切换模式登录/注册以太网(Ethernet)以太网的标准拓扑结构为总线型拓扑,但目前的快速以太网(100BASE-T、1000BASE-T标准)为了减少冲突,将能提高的网络速度和使用效率最大化,使用交换机(Switch hub)来进行网络连…查看全部内容关注话题​管理​分享​百科讨论精华视频等待回答详细内容以太网(英语:Ethernet)是一种计算机局域网技术。IEEE组织的IEEE 802.3标准制定了以太网的技术标准,它规定了包括物理层的连线、电子信号和介质访问控制的内容。以太网是目前应用最普遍的局域网技术,取代了其他局域网标准如令牌环、FDDI和ARCNET。以太网的标准拓扑结构为总线型拓扑,但目前的快速以太网(100BASE-T、1000BASE-T标准)为了减少冲突,将能提高的网络速度和使用效率最大化,使用交换机(Switch hub)来进行网络连接和组织。如此一来,以太网的拓扑结构就成了星型;但在逻辑上,以太网仍然使用总线型拓扑和CSMA/CD(Carrier Sense Multiple Access/Collision Detection,即载波多重访问/碰撞侦测)的总线技术。概述:1990年代的以太网网卡或叫NIC(Network Interface Card,以太网适配器)。这张卡可以支持基于同轴电缆的10BASE2 (BNC连接器,左)和基于双绞线的10BASE-T(RJ-45,右)。以太网实现了网络上无线电系统多个节点发送信息的想法,每个节点必须获取电缆或者信道才能传送信息,有时也叫作以太(Ether)。这个名字来源于19世纪的物理学家假设的电磁辐射媒体——光以太。 每一个节点有全球唯一的48位地址也就是制造商分配给网卡的MAC地址,以保证以太网上所有节点能互相鉴别。由于以太网十分普遍,许多制造商把以太网卡直接集成进计算机主板。以太网通讯具有自相关性的特点,这对于电信通讯工程十分重要。CSMA/CD共享介质以太网:带冲突检测的载波侦听多路访问(CSMA/CD)技术规定了多台电脑共享一个通道的方法。这项技术最早出现在1960年代由夏威夷大学开发的ALOHAnet,它使用无线电波为载体。这个方法要比令牌环网或者主控制网简单。当某台电脑要发送信息时,在以下行动与状态之间进行转换:开始 - 如果线路空闲,则启动传输,否则跳转到第4步。发送 - 如果检测到冲突,继续发送数据直到达到最小回报时间(min echo receive interval)以确保所有其他转发器和终端检测到冲突,而后跳转到第4步。成功传输 - 向更高层的网络协议报告发送成功,退出传输模式。线路繁忙 - 持续等待直到线路空闲。线路空闲 - 在尚未达到最大尝试次数之前,每隔一段随机时间转到第1步重新尝试。超过最大尝试传输次数 - 向更高层的网络协议报告发送失败,退出传输模式。就像在没有主持人的座谈会中,所有的参加者都通过一个共同的介质(空气)来相互交谈。每个参加者在讲话前,都礼貌地等待别人把话讲完。如果两个客人同时开始讲话,那么他们都停下来,分别随机等待一段时间再开始讲话。这时,如果两个参加者等待的时间不同,冲突就不会出现。如果传输失败超过一次,将延迟指数增长时间后再次尝试。延迟的时间通过截断二进制指数后移(英语:Exponential_backoff)(truncated binary exponential backoff)算法来实现。最初的以太网是采用同轴电缆来连接各个设备的。电脑通过一个叫做附加单元接口(Attachment Unit Interface,AUI)的收发器连接到电缆上。一条简单网路线对于一个小型网络来说很可靠,而对于大型网络来说,某处线路的故障或某个连接器的故障,都会造成以太网某个或多个网段的不稳定。因为所有的通信信号都在共享线路上传输,即使信息只是想发给其中的一个终端(destination),却会使用广播的形式,发送给线路上的所有电脑。在正常情况下,网络接口卡会滤掉不是发送给自己的信息,接收到目标地址是自己的信息时才会向CPU发出中断请求,除非网卡处于混杂模式(Promiscuous mode)。这种“一个说,大家听”的特质是共享介质以太网在安全上的弱点,因为以太网上的一个节点可以选择是否监听线路上传输的所有信息。共享电缆也意味着共享带宽,所以在某些情况下以太网的速度可能会非常慢,比如电源故障之后,当所有的网络终端都重新启动时。以太网中继器和集线器:在以太网技术的发展中,以太网集线器(Ethernet Hub)的出现使得网络更加可靠,接线更加方便。因为信号的衰减和延时,根据不同的介质以太网段有距离限制。例如,10BASE5同轴电缆最长距离500米 (1,640英尺)。最大距离可以通过以太网中继器实现,中继器可以把电缆中的信号放大再传送到下一段。中继器最多连接5个网段,但是只能有4个设备(即一个网段最多可以接4个中继器)。这可以减轻因为电缆断裂造成的问题:当一段同轴电缆断开,所有这个段上的设备就无法通讯,中继器可以保证其他网段正常工作。类似于其他的高速总线,以太网网段必须在两头以电阻器作为终端。对于同轴电缆,电缆两头的终端必须接上被称作“终端器”的50欧姆的电阻和散热器,如果不这么做,就会发生类似电缆断掉的情况:总线上的AC信号当到达终端时将被反射,而不能消散。被反射的信号将被认为是冲突,从而使通信无法继续。中继器可以将连在其上的两个网段进行电气隔离,增强和同步信号。大多数中继器都有被称作“自动隔离”的功能,可以把有太多冲突或是冲突持续时间太长的网段隔离开来,这样其他的网段不会受到损坏部分的影响。中继器在检测到冲突消失后可以恢复网段的连接。随着应用的拓展,人们逐渐发现星型的网络拓扑结构最为有效,于是设备厂商们开始研制有多个端口的中继器。多端口中继器就是众所周知的集线器(Hub)。集线器可以连接到其他的集线器或者同轴网络。第一个集线器被认为是“多端口收发器”或者叫做“fanouts”。最著名的例子是DEC的DELNI,它可以使许多台具有AUI连接器的主机共享一个收发器。集线器也导致了不使用同轴电缆的小型独立以太网网段的出现。像DEC和SynOptics这样的网络设备制造商曾经出售过用于连接许多10BASE-2细同轴线网段的集线器。非屏蔽双绞线(unshielded twisted-pair cables , UTP)最先应用在星型局域网中,之后也在10BASE-T中应用,最后取代了同轴电缆成为以太网的标准。这项改进之后,RJ45电话接口代替了AUI成为电脑和集线器的标准线路,非屏蔽3类双绞线/5类双绞线成为标准载体。集线器的应用使某条电缆或某个设备的故障不会影响到整个网络,提高了以太网的可靠性。双绞线以太网把每一个网段点对点地连起来,这样终端就可以做成一个标准的硬件,解决了以太网的终端问题。采用集线器组网的以太网尽管在物理上是星型结构,但在逻辑上仍然是总线型的,半双工的通信方式采用CSMA/CD的冲突检测方法,集线器对于减少数据包冲突的作用很小。每一个数据包都被发送到集线器的每一个端口,所以带宽和安全问题仍没有解决。集线器的总传输量受到单个连接速度的限制(10或100 Mbit/s),这还是考虑在前同步码、传输间隔、标头、档尾和封装上都是最小花费的情况。当网络负载过重时,冲突也常常会降低传输量。最坏的情况是,当许多用长电缆组成的主机传送很多非常短的帧(frame)时,可能因冲突过多导致网络的负载在仅50%左右程度就满载。为了在冲突严重降低传输量之前尽量提高网络的负载,通常会先做一些设定以避免类似情况发生。桥接和交换:尽管中继器在某些方面分隔了以太网网段,使得电缆断线的故障不会影响到整个网络,但它向所有的以太网设备转发所有的数据。这严重限制了同一个以太网网络上可以相互通信的机器数量。为了减轻这个问题,桥接方法被采用,在工作在物理层的中继器之基础上,桥接工作在数据链路层。通过网桥时,只有格式完整的数据包才能从一个网段进入另一个网段;冲突和数据包错误则都被隔离。通过记录分析网络上设备的MAC地址,网桥可以判断它们都在什么位置,这样它就不会向非目标设备所在的网段传递数据包。像生成树协议这样的控制机制可以协调多个交换机共同工作。早期的网桥要检测每一个数据包,因此当同时处理多个端口的时候,数据转发比Hub(中继器)来得慢。1989年网络公司Kalpana发明了EtherSwitch,第一台以太网交换机。以太网交换机把桥接功能用硬件实现,这样就能保证转发数据速率达到线速。大多数现代以太网用以太网交换机代替Hub。尽管布线方式和Hub以太网相同,但交换式以太网比共享介质以太网有很多明显的优势,例如更大的带宽和更好的异常结果隔离设备。交换网络典型的使用星型拓扑,虽然设备在半双工模式下运作时仍是共享介质的多节点网,但10BASE-T和以后的标准皆为全双工以太网,不再是共享介质系统。交换机启动后,一开始也和Hub一样,转发所有数据到所有端口。接下来,当它记录了每个端口的地址以后,他就只把非广播数据发送给特定的目的端口。因此线速以太网交换可以在任何端口对之间实现,所有端口对之间的通讯互不干扰。因为数据包一般只是发送到他的目的端口,所以交换式以太网上的流量要略微小于共享介质式以太网。然而,交换式以太网仍然是不安全的网络技术,因为它很容易因为ARP欺骗或者MAC满溢而瘫痪,同时网络管理员也可以利用监控功能抓取网络数据包。当只有简单设备(除Hub之外的设备)连接交换机端口时,整个网络可能处于全双工模式。如果一个网段只有2个设备,那么冲突探测也不需要了,两个设备可以随时收发数据。这时总带宽是链路的2倍,虽然双方的带宽相同,但没有发生冲突就意味着几乎能利用到100%的带宽。交换机端口和所连接的设备必须使用相同的双工设置。多数100BASE-TX和1000BASE-T设备支持自动协商特性,即这些设备通过信号来协调要使用的速率和双工设置。然而,如果自动协商功能被关闭或者设备不支持,则双工设置必须通过自动检测进行设置或在交换机端口和设备上都进行手工设置以避免双工错配——这是以太网问题的一种常见原因(设备被设置为半双工会报告迟发冲突,而设备被设为全双工则会报告runt)。许多较低层级的交换机没有手工进行速率和双工设置的能力,因此端口总是会尝试进行自动协商。当启用了自动协商但不成功时(例如其他设备不支持),自动协商会将端口设置为半双工。速率是可以自动感测的,因此将一个10BASE-T设备连接到一个启用了自动协商的10/100交换端口上时将可以成功地创建一个半双工的10BASE-T连接。但是将一个配置为全双工100Mb工作的设备连接到一个配置为自动协商的交换端口时(反之亦然)则会导致双工错配。即使电缆两端都设置成自动速率和双工模式协商,错误猜测还是经常发生而退到10Mbps模式。因此,如果性能差于预期,应该查看一下是否有计算机设置成10Mbps模式了,如果已知另一端配置为100Mbit,则可以手动强制设置成正确模式。.当两个节点试图用超过电缆最高支持数据速率(例如在3类线上使用100Mbps或者3类/5类线使用1000Mbps)通信时就会发生问题。不像ADSL或者传统的拨号Modem通过详细的方法检测链路的最高支持数据速率,以太网节点只是简单的选择两端支持的最高速率而不管中间线路,因此如果速率过高就会导致链路失效。解决方案为强制通讯端降低到电缆支持的速率。以太网类型:除了以上提到的不同帧类型以外,各类以太网的差别仅在速率和配线。因此,同样的网络协议栈软件可以在大多数以太网上执行。以下的章节简要综述了不同的正式以太网类型。除了这些正式的标准以外,许多厂商因为一些特殊的原因,例如为了支持更长距离的光纤传输,而制定了一些专用的标准。很多以太网卡和交换设备都支持多速率,设备之间通过自动协商设置最佳的连接速度和双工方式。如果协商失败,多速率设备就会探测另一方使用的速率但是默认为半双工方式。10/100以太网端口支持10BASE-T和100BASE-TX。10/100/1000支持10BASE-T、100BASE-TX和1000BASE-T。部分以太网类型局域网(英语:Local Area Network,简称LAN)是连接住宅、学校、实验室、大学校园或办公大楼等有限区域内计算机的计算机网络 。相比之下,广域网(WAN)不仅覆盖较大的地理距离,而且还通常涉及固接专线和对于互联网的链接。 相比来说互联网则更为广阔,是连接全球商业和个人电脑的系统。在历经使用了链式局域网(英语:ARCNET)、令牌环与AppleTalk技术后,以太网和Wi-Fi(无线网络连接)是现今局域网最常用的两项技术。机理:局域网(Local Area Network, LAN),又称内网。指覆盖局部区域(如办公室或楼层)的计算机网络。按照网络覆盖的区域(距离)不同,其他的网络类型还包括个人网、城域网、广域网等。早期的局域网网络技术都是各不同厂家所专有,互不兼容。后来,电机电子工程师学会推动了局域网技术的标准化,由此产生了IEEE 802系列标准。这使得在建设局域网时可以选用不同厂家的设备,并能保证其兼容性。这一系列标准覆盖了双绞线、同轴电缆、光纤和无线等多种传输介质和组网方式,并包括网络测试和管理的内容。随着新技术的不断出现,这一系列标准仍在不断的更新变化之中。以太网(IEEE 802.3标准)是最常用的局域网组网方式。以太网使用双绞线作为传输介质。在没有中继的情况下,最远可以覆盖200米的范围。最普及的以太网类型数据传输速率为100Mb/s,更新的标准则支持1000Mb/s和10Gb/s的速率。其他主要的局域网类型有令牌环和FDDI(光纤分布数字接口,IEEE 802.8)。令牌环网络采用同轴电缆作为传输介质,具有更好的抗干扰性;但是网络结构不能很容易的改变。FDDI采用光纤传输,网络带宽大,适于用作连接多个局域网的骨干网。近两年来,随着802.11标准的制定,无线局域网的应用大为普及。这一标准采用2.4GHz 和5.8GHz 的频段,数据传输速度最高可以达到300Mbps和866Mbps。局域网标准定义了传输介质、编码和介质访问等底层(一二层)功能。要使数据通过复杂的网络结构传输到达目的地,还需要具有寻址、路由和流量控制等功能的网络协议的支持。TCP/IP(传输控制协议/互联网络协议)是最普遍使用的局域网网络协议。它也是互联网所使用的网络协议。其他常用的局域网协议包括,IPX、AppleTalk等。在无线 LAN 中,用户可以在覆盖区域内不受限制地移动。无线网络因其易于安装而在住宅和小型企业中流行起来。大多数无线局域网都使用 Wi-Fi,因为它内置于智能手机、平板电脑和笔记本电脑中。客人通常可以通过热点服务上网。网络拨接互联网(英语:Internet)是指20世纪末期兴起电脑网络与电脑网络之间所串连成的庞大网络系统。这些网络以一些标准的网络协议相连。它是由从地方到全球范围内几百万个私人、学术界、企业和政府的网络所构成,通过电子、无线和光纤网络技术等等一系列广泛的技术联系在一起。互联网承载范围广泛的信息资源和服务,比方说相互关系的超文本文件,还有万维网(WWW)的应用、电子邮件、通话,以及文件共享服务。互联网的起源可以追溯到1960年代美国联邦政府委托进行的一项研究,目的是创建容错与电脑网络的通信。互联网的前身ARPANET最初在1980年代作为区域学术和军事网络连接的骨干。1980年代,NSFNET(英语:NSFNET)成为新的骨干而得到资助,以及其他商业化扩展得到了私人资助,这导致了全世界网络技术的快速发展,以及许多不同网络的合并结成更大的网络。到1990年代初,商业网络和企业之间的连接标志着向现代互联网的过渡。尽管互联网在1980年代只被学术界广泛使用,但商业化的服务和技术,令其极快的融入了现代每个人的生活。互联网并不等同万维网,互联网是指凡是能彼此通信的设备组成的网络就叫互联网,指利用TCP/IP通讯协定所创建的各种网络,是国际上最大的互联网,也称“国际互联网”。万维网是一个由许多互相链接的超文本组成的系统,通过互联网访问。在此定义下,万维网是互联网的一项服务。不过多数民众并不区分两者,常常混用。连接技术:任何需要使用互联网的计算机必须通过某种方式与互联网进行连接。互联网接入技术的发展非常迅速,带宽由最初的14.4Kbps发展到目前的100Mbps甚至1Gbps带宽,接入方式也由过去单一的电话拨号方式,发展成现在多样的有线和无线接入方式,接入终端也开始朝向移动设备发展。并且更新更快的接入方式仍在继续地被研究和开发。架构:最顶层的是一些应用层协议,这些协议定义了一些用于通用应用的数据报结构,包括FTP及HTTP等。中间层是UDP协议和TCP协议,它们用于控制数据流的传输。UDP是一种不可靠的数据流传输协议,仅为网络层和应用层之间提供简单的接口。而TCP协议则具有高的可靠性,通过为数据报加入额外信息,并提供重发机制,它能够保证数据不丢包、没有冗余包以及保证数据包的顺序。对于一些需要高可靠性的应用,可以选择TCP协议;而相反,对于性能优先考虑的应用如流媒体等,则可以选择UDP协议。最底层的是互联网协议,是用于报文交换网络的一种面向数据的协议,这一协议定义了数据包在网际传送时的格式。目前使用最多的是IPv4版本,这一版本中用32位定义IP地址,尽管地址总数达到43亿,但是仍然不能满足现今全球网络飞速发展的需求,因此IPv6版本应运而生。在IPv6版本中,IP地址共有128位,“几乎可以为地球上每一粒沙子分配一个IPv6地址”。IPv6目前并没有普及,许多互联网服务提供商并不支持IPv6协议的连接。但是,可以预见,将来在IPv6的帮助下,任何家用电器都有可能连入互联网。互联网承载着众多应用程序和服务,包括万维网、社交媒体、电子邮件、移动应用程序、多人电子游戏、互联网通话、文件分享和流媒体服务等。提供这些服务的大多数服务器托管于数据中心,并且通过高性能的内容分发网络访问。万维网(英语:World Wide Web)亦作WWW、Web、全球广域网,是一个透过互联网访问的,由许多互相链接的超文本组成的信息系统。英国科学家蒂姆·伯纳斯-李于1989年发明了万维网。1990年他在瑞士CERN的工作期间编写了第一个网页浏览器。网页浏览器于1991年1月向其他研究机构发行,并于同年8月向公众开放。罗伯特·卡里奥设计的Web图标万维网是信息时代发展的核心,也是数十亿人在互联网上进行交互的主要工具。网页主要是文本文件格式化和超文本置标语言(HTML)。除了格式化文字之外,网页还可能包含图片、视频、声音和软件组件,这些组件会在用户的网页浏览器中呈现为多媒体内容的连贯页面。万维网并不等同互联网,万维网只是互联网所能提供的服务其中之一,是靠着互联网运行的一项服务。参考文献: Wendell Odom. CCENT/CCNA ICND1 100-105 Official Cert Guide. Cisco Press. 2016: 43页. ISBN 978-1-58720-580-4.Internet协议观念与实现ISBN 9577177069Internet协议观念与实现ISBN 9577177069IEEE 802.3-2008 Section 3 Table 38-2 p.109IEEE 802.3-2008 Section 3 Table 38-6 p.111网络化生存,乔岗,中国城市出版社,1997年,ISBN 978-7-5074-0930-7Richard J. Smith, Mark Gibbs, Paul McFedries 著,毛伟、张文涛 译,Internet漫游指南,人民邮电出版社,1998年. ISBN 978-7-115-06663-3世界是平的,汤马斯·佛里曼 著,2005年出版. ISBN 978-986-80180-9-9内容采用CC BY-SA 3.0授权。浏览量2690 万讨论量9728  帮助中心知乎隐私保护指引申请开通机构号联系我们 举报中心涉未成年举报网络谣言举报涉企侵权举报更多 关于知乎下载知乎知乎招聘知乎指南知乎协议更多京 ICP 证 110745 号 · 京 ICP 备 13052560 号 - 1 · 京公网安备 11010802020088 号 · 京网文[2022]2674-081 号 · 药品医疗器械网络信息服务备案(京)网药械信息备字(2022)第00334号 · 广播电视节目制作经营许可证:(京)字第06591号 · 服务热线:400-919-0001 · Investor Relations · © 2024 知乎 北京智者天下科技有限公司版权所有 · 违法和不良信息举报:010-82716601 · 举报邮箱:jubao@zhihu.

基础知识——以太网(Ethernet )-CSDN博客

>

基础知识——以太网(Ethernet )-CSDN博客

基础知识——以太网(Ethernet )

季秊爱桃楸

已于 2023-07-15 13:45:51 修改

阅读量3.7k

收藏

36

点赞数

分类专栏:

网络路由

文章标签:

网络协议

于 2023-07-14 14:40:43 首次发布

原文链接:https://blog.csdn.net/weixin_40274679/article/details/105995323?ops_request_misc=&request_id=b97d66480b3a426d9509466504684f58&biz_id=&utm_medium=distribute.pc_search_result.none-task-blog-2~blog~koosearch~default-2-105995323-null-null.268^v1^control&utm_t

版权

网络路由

专栏收录该内容

1 篇文章

1 订阅

订阅专栏

目录

以太网概述

以太网——标准和实施

以太网—— 第1层和第2层

逻辑链路控制——连接到上层

MAC——获取到介质的数据

以太网的物理实现

以太网——通过LAN的通信

以太网历史

以太网冲突管理

发展到 1Gbps 及以上速度

以太网帧

帧——封装数据包

以太网MAC 地址

十六进制计数和编址

另一个编址层

以太网单播、组播和广播

以太网MAC

以太网中的MAC

CSMA/CD – 过程

以太网定时

帧间隙和回退

以太网物理层

以太网物理层概述

10 和 和 100 Mbps 以太网

1000 Mbps 以太网

以太网—— 未来选择

集线器和交换机

传统以太网—— 使用集线器

以太网 ——使用交换机

交换机—— 选择性转发

地址解析协议 (ARP)

ARP 过程 – 将IP映射到MAC地址

ARP 过程—— 目的主机在本地网络外

ARP 过程 – 删除地址映射

ARP 广播 – 问题

以太网概述

以太网——标准和实施

1980 年,Digital Equipment Corporation、Intel 和 Xerox (DIX) 协会发布了第一个以太网标准。 1985 年,本地和城域网的电气电子工程师协会 (IEEE) 标准委员会发布了 LAN 标准。 以太网在 OSI 模型的下两层,也就是 数据链路层和 物理层上运行。

以太网—— 第1层和第2层

以太网在第 1 层上涉及信号、在介质中传输的比特流、将信号放到介质上的物理组件以及各种拓扑,它在设备之间的通信中扮演主要角色。

数据链路子层极大地促进了技术兼容性和计算机通信。

(1)MAC 子层负责将要用于传送信息的物理组件,并且准备通过介质传输的数据。 (2)逻辑链路控制 (LLC) 子层保持通信过程所用物理设备的相对独立性。

逻辑链路控制——连接到上层

对于以太网,IEEE 802.2 标准规范 LLC 子层的功能,而 802.3 标准规范 MAC 子层和物理层的功能。

LLC 子层获取网络协议数据(通常是IPv4 数据包)并加入控制信息,帮助将数据包传送到目的节点。

第 2 层通过 LLC 与上层通信。

逻辑链路控制(LLC)

1.建立与上层的连接

2.将网络层数据包封装成帧

3.标识网络层协议

4.保持物理设备的相对独立性

MAC——获取到介质的数据

介质访问控制 (MAC) 是数据链路层以太网子层的下半层,由硬件(NIC)实现 以太网 MAC 子层主要有两项职责 (1)数据封装 (2)介质访问控制

数据封装:帧定界、编址、错误检测

介质访问控制:对于将帧放入介质中和从介质中取下帧实施控制、介质恢复

以太网的物理实现

以太网的成功离不开以下因素: (1)维护的简便性 (2)整合新技术的功能 (3)可靠性 (4)安装和升级成本 在当今的网络中,以太网使用UTP 铜缆和光缆通过集线器和交换机等中间设备连接网络设备。

以太网——通过LAN的通信

以太网历史

以太网技术基础最早起步于 1970 年,是在一个叫做 Alohanet 的计划中提出来的。 以太网第一个版本融入了一种称为 载波侦听多路访问/ 冲突检测 (CSMA/CD) 的介质访问方法。 CSMA/CD 负责管理多台设备通过一个共享物理介质通信时产生的问题。

以太网的早期版本使用同轴电缆在总线拓扑中连接计算机。 粗缆 (10BASE5) 细缆 (10BASE2) 最初的同轴粗缆和同轴细缆等物理介质被早期的 UTP 类电缆所取代。 物理拓扑也改为使用集线器的星型拓扑。

以太网冲突管理

(1)传统的以太网---半双工 基于共享的介质,每次只有一个站点能够成功发送。 随着更多的设备加入以太网,帧的冲突量大幅增加。

(2)当前的以太网---全双工 交换机可以隔离每个端口,只将帧发送到正确的目的地(如果目的地已知),而不是发送每个帧到每台设备,数据的流动因而得到了有效的控制。

发展到 1Gbps 及以上速度

一些设计和安装都很优秀的现代网络,其设备和电缆可能只需要略加升级,便能以更高的速度运行。这种功能具有降低网络总拥有成本的优点。

在以太网中使用光缆后,电缆连接距离大幅延长,使 LAN 与 WAN 之间的差异没那么明显了。 以太网最初局限于单一建筑物中的 LAN 电缆系统,后来扩展到建筑物之间,而现在可以覆盖一个城市,称之为城域网 (MAN)。

以太网帧

帧——封装数据包

以太网帧结构向第 3 层 PDU 添加帧头和帧尾来封装所发送的报文。 以太网帧有两种样式:IEEE 802.3(原始)和修订后的 IEEE 802.3(Ethernet)。

“前导码”(7 个字节)和“帧首定界符 (SFD)”(1 个字节)字段用于同步发送设备与接收设备。

“目的 MAC 地址”字段(6 个字节)是预定接收方的标识符。

“源 MAC 地址”字段(6 个字节)标识帧的源网卡或接口。

“长度/类型”字段(2 个字节)定义帧的数据字段的准确长度。

“数据”和“填充位”字段(46 - 1500 个字节)包含来自较高层次的封装数据(一般是第 3 层 PDU 或更常见的 IPv4 数据包)。

“帧校验序列 (FCS)”字段(4 个字节)用于检测帧中的错误。它使用循环冗余校验(CRC)。发送设备在帧的 FCS 字段中包含 CRC 的结果。

以太网MAC 地址

为协助确定以太网中的源地址和目的地址,创建了称为介质访问控制 (MAC) 地址的唯一标识符。 MAC 编址作为第 2 层 PDU 的一部分添加上去。 以太网 MAC 地址是一种表示为 12 个十六进制数字的 48 位二进制值。

IEEE 要求厂商遵守两条简单的规定: 分配给网卡或其它以太网设备的所有 MAC 地址都必须使用厂商分配的 OUI 作为前 3个字节。 OUI 相同的所有 MAC 地址的最后 3 个字节必须是唯一的值(厂商代码或序列号)。 MAC 地址通常称为烧录地址 (BIA),因为它被烧录到网卡的 ROM(只读存储器)中。

十六进制计数和编址

十六进制 ("Hex") 是以 16 为基数的计数系统使用数字 0 到 9 和字母 A 到 F。 十六进制通常以 0x 前导的文本值(如 0x73)或 16 为下标的值表示。

十六进制用于表示以太网 MAC 地址和 IP V6 地址。. 你已经在 Wireshark 的 Packets Byte(数据包字节)窗格见过十六进制,在那里十六进制用于表示帧和数据包中的二进制值。

另一个编址层

OSI 数据链路层(第 2 层)物理编址,是作为以太网 MAC 地址实现的,用于通过本地介质传输帧。 IPv4 地址等网络层(第 3 层)地址普遍存在的源和目的端都理解的逻辑编址。.

以太网单播、组播和广播

在以太网中,第 2 层单播、组播和广播通信会使用不同的 MAC 地址。 单播 MAC 地址是帧从一台发送设备发送到一台目的设备时使用的唯一地址。

发送广播时,数据包以主机部分全部为一 (1) 的地址作为目的 IP 地址。这种地址计数法表示本地网络(广播域)中的所有主机都将接收和处理该数据包。 许多网络协议,如动态主机配臵协议 (DHCP) 和地址解析协议 (ARP) 等,都使用广播。

组播地址允许源设备向一组设备发送数据包。 属于某一组播组的设备都被分配了该组播组 IP 地址。组播地址的范围为 224.0.0.0到 239.255.255.255。

以太网MAC

以太网中的MAC

以太网使用载波侦听多路访问/冲突检测 (CSMA/CD) 来检测和处理冲突,并管理通信的恢复。 设备可以确定能够发送的时间。当设备检测到没有其它计算机在传送帧或载波信号时,就会发送其要发送的内容。

CSMA/CD – 过程

载波侦听---在 CSMA/CD 访问方法中,要发送报文的所有网络设 备在发送之前必须侦听。多路访问---如果设备之间的距离导致一台设备的信号延时,则另一台设备可能没有检测到信号,从而也开始发送。 冲突检测---当设备处于侦听模式时,可以检测共享介质中发生的冲突。 堵塞信号和随机回退---发送设备检测到冲突之后,将发出堵塞信号。这种堵塞信号用于通知其它设备发生了冲突,以便它们调用回退算法。回退算法将使所有设备在随机时间内停止发送,以让冲突消除。

载波侦听多路访问/冲突检测 (CSMA/CD)

1.在传输之前侦听——监控介质中是否有流量

2.在传输之前侦听——检测到载波信号

3.等待指定的时间——信号通过。稍后重试

4.在传输之前侦听——监控介质中是否有流量

5.未检测到载波信号——计算机传输

6.在传输之前侦听——监控介质中是否有流量

7.未检测到载波信号——计算机传输

8.发送冲突

9.发出堵塞信号

10.回退定时器——稍后重试

如图所示,集线器互连成一个称为“扩展星型”的物理拓扑。扩展星型可以极大地扩展冲突域。 通过一台集线器或一系列直接相连的集线器访问公共介质的相连设备称为冲突域。冲突域也称为网段。 集线器和中继器因此会影响冲突域大小的增长。

以太网定时

发送的电信号需要一定的时间(延时)传播(传送)到电缆。信号路径中的每台集线器或中继器在将比特从一个端口转发到下一个端口时,都会增加延时时间。 这种累加的延时将会增大冲突发生的机率,因为侦听节点可能会在集线器或中继器处理报文时跳变成发送信号。

吞吐量速度为 10 Mbps 及以下的以太网通信是异步通信。这种环境下的异步通信意味着,每台接收设备将使用 8 个字节的定时信息来使接收电路与传入的数据同步,然后丢弃这 8 个字节。 吞吐量为 100 Mbps 及更高的以太网通信是同步通信。这种环境下的同步通信表示不需要定时信息。但是,由于兼容性的原因“前导码”和“帧首定界符 (SFD)”字段仍然存在。

不管介质速度如何,将比特发送到介质并在介质上侦听到它都需要一定的时间。这段时间称为比特时间。 实际计算的碰撞槽时间刚好比在冲突域的最远两点之间发送所需的理论时间长,与另一个时间最近的发送发生冲突,然后让冲突碎片返回发送站点而被检测到。

帧间隙和回退

以太网标准要求两个非冲突帧之间有最小的间隙。这样,介质在发送上一个帧后将获得稳定的时间,设备也获得了处理帧的时间。 此时间称为帧间隙,其长度是从一个帧的 FCS 字段最后一位到下一个帧的“前导码”第一位。

只要一检测到冲突,发送设备就会发送一个 32 位“堵塞”信号以强调该冲突。这可确保 LAN 中的所有设备都能检测到冲突。

回退定时:冲突发生后,所有设备都让电缆变成空闲(各自等待一个完整的帧间隙),发送有冲突的设备必须再等待一段时间,然后才可以重新发送冲突的帧,这段等待时间会逐渐增长。

以太网物理层

以太网物理层概述

以太网遵守 IEEE 802.3 标准。目前为通过光缆和双绞线电缆的运行定义 了四种数据速率: (1)10 Mbps - 10Base-T 以太网 (2)100 Mbps - 快速以太网 (3)1000 Mbps - 千兆以太网 (4)10 Gbps - 万兆以太网

10 和 和 100 Mbps 以太网

主要的 10 Mbps 以太网包括: (1)使用同轴粗缆的 10BASE5 (2)使用同轴细缆的 10BASE2 (3)使用 3 类/5 类非屏蔽双绞线电缆的 10BASE-T

100 Mbps 以太网也称为快速以太网,可以使用双绞线铜缆或光纤介质来实现。最常见的 100 Mbps 以太网有: (1)使用 5 类或更高规格 UTP 电缆的 100BASE-TX (2)使用光缆的 100BASE-FX

1000 Mbps 以太网

千兆以太网标准的开发产生了 UTP 铜缆、单模光缆和多模光缆的规格。 1000BASE-T 以太网使用全部四对 5 类或更高规格的 UTP 电缆提供全双工发送。

与 UTP 相比,光纤千兆以太网 - 1000BASE-SX 和 1000BASE-LX 有以下优势:无杂信、体积小,并且无需中继的距离远,带宽高。

以太网—— 未来选择

IEEE 802.3ae 标准经过改编,纳入了 10 Gbps - 通过光缆进行的全双工发送。 万兆以太网 (10GbE) 在不断发展,不仅用于 LAN,而且用于 WAN 和 MAN。 千兆以太网现已得到广泛采用,万兆产品也在不断增加,但 IEEE 和万兆以太网联盟仍未继续研究 40、100 甚至 160-Gbps 的标准。

集线器和交换机

传统以太网—— 使用集线器

传统以太网使用集线器来连接 LAN 网段中的节点。集线器不执行任何类型的通信过滤,而是将所有比特转发到其连接的每台设备。

以太网 ——使用交换机

交换机可以将 LAN 细分为多个单独的冲突域,其每个端口都代表一个单独的冲突域,为该端口连接的节点提供完全的介质带宽。 

在所有节点直接连接到交换机的 LAN 中,网络的吞吐量大幅增加。这种增加主要缘于三个原因: (1)每个端口有专用的带宽 (2)没有冲突的环境 (3)全双工操作

交换机—— 选择性转发

以太网交换机选择性地将个别帧从接收端口转发到连接目的节点的端口。 交换机维护着一个表,称为MAC 表。该表将目的 MAC 地址与用于连接节点的端口进行比对。

以太网 LAN 交换机采用五种基本操作来实现其用途: 获取、过期、泛洪、选择性转发、过滤 

地址解析协议 (ARP)

ARP 过程 – 将IP映射到MAC地址

ARP 协议具有两项基本功能: (1)将 IPv4 地址解析为 MAC 地址;(2)维护映射的缓存

具体的ARP转发过程可以看我之前的文章《网络基础知识之ARP协议》

ARP 过程—— 目的主机在本地网络外

如果目的 IPv4 主机不在本地网络上,则源节点需要将帧传送到作为网关的路由器接口,或用于到达该目的地的下一跳。

源节点将使用网关的 MAC 地址作为帧(其中含有发往其它网络上主机的 IPv4 数据包)的目的地址。

使用 ARP 代理时,就好像路由器接口是具有 ARP 请求所请求的 IPv4 地址的主机一样。 另一种使用代理 ARP 的情况是:主机认为它已经直接连接到目的主机所在的逻辑网络。如果主机配臵了错误的掩码,通常会发生这种情况。 还有一种使用代理 ARP 的情况是主机没有配臵默认网关。代理 ARP 可以帮助网络中的设备到达远程子网,而无需配臵路由或默认网关。

ARP 过程 – 删除地址映射

对于每台设备,ARP 缓存定时器将会删除在指定时间内未使用的 ARP 条目。具体时间取决于设备及其操作系统。

ARP 广播 – 问题

介质开销 安全性--ARP 欺骗/ ARP 毒化

优惠劵

季秊爱桃楸

关注

关注

0

点赞

36

收藏

觉得还不错?

一键收藏

知道了

0

评论

基础知识——以太网(Ethernet )

1980 年,Digital Equipment Corporation、Intel 和 Xerox (DIX) 协会发布了第一个以太网标准。1985 年,本地和城域网的电气电子工程师协会 (IEEE) 标准委员会发布了 LAN 标准。以太网在 OSI 模型的下两层,也就是 数据链路层和 物理层上运行。以太网遵守 IEEE 802.3 标准。目前为通过光缆和双绞线电缆的运行定义了四种数据速率:(1)10 Mbps - 10Base-T 以太网(2)100 Mbps - 快速以太网。

复制链接

扫一扫

专栏目录

参与评论

您还未登录,请先

登录

后发表或查看评论

以太网是什么?看完明白了【史上最详细介绍】

xiaomanong2的博客

05-12

3万+

以太网是什么?

以太网(Ethernet)最早是由Xerox(施乐)公司创建的局域网组网规范,1980年DEC、Intel和Xeox三家公司联合开发了初版Ethernet规范—DIX 1.0,1982年这三家公司又推出了修改版本DIX 2.0,并将其提交给EEE 802工作组,经IEEEE成员修改并通过后,成为IEEE的正式标准,并编号为IEEE 802.3。虽然Ethernet规范和IEEE 802.3规范并不完全相同,但一般认为Ethernet和正IEEE 802.3是兼容的。

以太网是应用最广泛的

FPGA实现以太网(一)——以太网简介

m0_52889836的博客

12-28

1031

以太网(Ethernet)是当今现有局域网采用的最通用的通信协议标准, 该标准定义了在局域网中采用的电缆类型和信号处理方法。以太网凭借其成本低、通信速率高、抗干扰性强等优点被广泛应用在网络远程监控、 交换机、工业自动化等对通信速率要求较高的场合。以太网是一种产生较早,使用相当广泛的,被电气与电子工程师协会( IEEE)所采纳作为的标准。以太网的分类有标准以太网(10Mbit/s)、 快速以太网(100Mbit/s)和千兆以太网( 1000Mbit/s)。

什么是以太网?为什么要叫做“以太”网?

lifengxun20121019的专栏

12-24

8525

以太网是当今现有局域网采用的最通用的通信协议标准,组建于七十年代早期。Ethernet(以太网)是一种传输速率为10Mbps的常用局域网(LAN)标准。在以太网中,所有计算机被连接一条同轴电缆上,采用具有冲突检测的载波感应多处访问(CSMA/CD)方法,采用竞争机制和总线拓朴结构。基本上,以太网由共享传输媒体,如双绞线电缆或同轴电缆和多端口集线器、网桥或交换机构成。在星型或总线型配置结构中,集线器

整理加解释:以太网、快速以太网、千兆以太网和万兆以太网分别的概念和区分 大详解

publicstaticfinal的博客

07-23

6674

**

以太网是什么

**

以太网(Ethernet)最早是由Xerox(施乐)公司创建的局域网组网规范,1980年DEC、Intel和Xeox三家公司联合开发了初版Ethernet规范—DIX 1.0,1982年这三家公司又推出了修改版本DIX 2.0,并将其提交给EEE 802工作组,经IEEEE成员修改并通过后,成为IEEE的正式标准,并编号为IEEE 802.3。虽然Ethernet规范和IEEE 802.3规范并不完全相同,但一般认为Ethernet和正IEEE 802.3是兼容的。

以太网是应用最

以太网Ethernet通信协议

STATEABC的博客

08-07

7356

以太网协议(Ethernet Protocol)是一种广泛应用于局域网(LAN)和广域网(WAN)的计算机网络通信协议。它是一种基于共享介质的局域网技术,最早由Xerox、Intel和Digital Equipment Corporation(DEC)于1970年代开发,并在1980年代初由IEEE标准化为IEEE 802.3。以太网根据最大传输速率的不同可以分为标准的以太网(10Mbit/s)、快速以太网(100Mbit/s)、千兆以太网 (1000Mbit/s)和万兆以太网(10Gbit/s)。

以太网(Ethernet)相关基础知识

Already8888的博客

05-17

1万+

以太网Ethernet

•Ethernet Cabling

•Manchester Encoding

•The Ethernet MAC Sublayer Protocol

•The Binary Exponential Backoff Algorithm

•Ethernet Performance

•Switched Ethernet

以太网电缆

从上到下,分别是粗同轴电缆、细同轴电缆、双绞线、光纤

术语10base5的含义是:它使用基带信号运行在10Mbps的...

计算机网络---以太网

qq_63976098的博客

09-16

1495

以太网;以太网传输介质与拓扑结构的发展;10BASE-T以太网;适配器&MAC地址;高速以太网

以太网是什么要怎么连接电脑

qq_29508575的博客

06-24

1万+

以太网其实就是我们平时说的网络,它是属于一种计算机局域网的技术,也就是我们平时电脑连接的宽带网络。想要依靠电脑获取互联网信息,就必须给电脑连接以太网,那么电脑要怎么连接以太网呢?这个过程很简单。在这里1、在把电脑打开后,点击设置图标把电脑设置打开。2、在Windows设置中找到 网络和internet 点击进入。3、在左侧找到以太网点击,然后选择网络连接就行了,如果电脑是初次连接以太网的话,需要找到你的宽带并输入密码进行连接。4、如果需要连接无线网络也就是wifi的话,就点击WLAN,...

接口协议(四):以太网(Ethernet)学习(一):协议

热门推荐

qq_40483920的博客

08-27

4万+

目录一、以太网二、网络模型三、以太网数据包格式以太网帧格式三、TCP/IP协议簇1、IP协议2、UDP协议

因为没有做过以太网的项目,也没有进行过以太网通信测试,本片博客仅仅是对以太网协议极小一部分的学习了解。如有不当之处,还请指正。

一、以太网

以太网是一种产生较早,使用相当广泛的局域网技术,局域网就是一个区域的网络互联,可以使办公室也可以是学校等等,大小规模不一。

最初是由Xerox(施乐)公司创建(大概是1973年诞生)并由Xerox、 Intel和DEC公司联合开发的基带局域网规范,后来被电气与电子

什么是以太网

digitalkee的博客

03-26

1万+

版本1:

一般都是以集线器或交换机作为核心节点,再从集线器或交换机拉很多根网线出来,把各台主机连接到这个核心节点上。

以太网(Ethernet)是最广泛安装的局域网技术。正如现在在IEEE 802.3标准中指出的,以太网原来由Xerox开发,后来由Xerox, DEC和Intel共同开发的。以太网一般使用同轴电缆和特种双绞线。最通常的以太网系统是10BASE-T,它的传输速率可达10 Mbps。...

10Mbps以太网Ethernet的几种形式分别介绍

10-01

本文将详细介绍10Mbps以太网Ethernet的几种形式,需要了解的朋友可以参考下

计算机网络基础——以太网

03-24

西门子公司对于以太网的视频教程.详细的介绍了以太网和网络基础和深入知识,可以值得看一看。

以太网基础知识.ppt

07-18

以太网原理,讲解以太网的发展史,是很好的入门资料,

android 以太网 添加设置Ethernet

11-27

android在设置中添加以太网ethernet方法, 在可以是学习框架的一种好方法。

计算机网络面经-HTTPS加密过程

weixin_65113709的博客

03-07

1367

在上篇文章HTTPS详解一中,我已经为大家介绍了 HTTPS 的详细原理和通信流程,但总感觉少了点什么,应该是少了对安全层的针对性介绍,那么这篇文章就算是对HTTPS 详解一的补充吧。还记得这张图吧。HTTPS 和 HTTP的区别显然,HTTPS 相比 HTTP最大的不同就是多了一层 SSL (Secure Sockets Layer 安全套接层)或 TLS (Transport Layer Security 安全传输层协议)。

【学习心得】Python好库推荐——websocket-client

qq_39780701的博客

03-07

614

【学习心得】Python好库推荐——websocket-client

网络聊天室的UDP实现以及数据库

最新发布

Duxingke_的博客

03-08

803

网络聊天室UDP实现。

C语言实现Linux下的UDP服务端和客户端

nothing

03-06

449

程序实现了UDP服务端和客户端,客户端发送消息后等待服务端响应

spe标准系列频率以太网协议

06-09

SPE (Single Pair Ethernet)是一种新兴的以太网标准,其标准系列包括了以下几个频率:

1. IEEE 802.3cg: 该标准规定了在10 Mbit/s的速率下,SPE可以通过15米的单对电缆进行通信,适用于工业控制和汽车应用等领域。

2. IEEE 802.3bw: 该标准规定了在100 Mbit/s的速率下,SPE可以通过15米的单对电缆进行通信,适用于车载应用和智能家居等领域。

3. IEEE 802.3bu: 该标准规定了在1 Gbit/s的速率下,SPE可以通过40米的单对电缆进行通信,适用于工业自动化、智能交通和医疗设备等领域。

4. IEEE 802.3bz: 该标准规定了在2.5 Gbit/s和5 Gbit/s的速率下,SPE可以通过100米的单对电缆进行通信,适用于数据中心、智能楼宇和数字家庭等领域。

以上标准系列频率的制定,使得SPE在不同的应用场景下都能够提供高速率、低成本、小型化和低功耗等优点,推动了SPE技术的快速发展和广泛应用。

“相关推荐”对你有帮助么?

非常没帮助

没帮助

一般

有帮助

非常有帮助

提交

季秊爱桃楸

CSDN认证博客专家

CSDN认证企业博客

码龄7年

暂无认证

3

原创

31万+

周排名

154万+

总排名

2万+

访问

等级

146

积分

22

粉丝

12

获赞

0

评论

205

收藏

私信

关注

热门文章

车规级芯片IC等级及其特点

4145

基础知识——以太网(Ethernet )

3754

1、硬件--LDO参数解读、特性、参考设计

3348

车载以太网基础知识介绍(MAC/PHY/MII解释对比)

2636

晶振详解之测试

2060

分类专栏

智能座舱

网络路由

1篇

硬件设计

14篇

杂七杂八

1篇

您愿意向朋友推荐“博客详情页”吗?

强烈不推荐

不推荐

一般般

推荐

强烈推荐

提交

最新文章

车规级芯片IC等级及其特点

OSI七层模型介绍

车载以太网基础知识介绍(MAC/PHY/MII解释对比)

2023年1篇

2021年1篇

2020年15篇

目录

目录

分类专栏

智能座舱

网络路由

1篇

硬件设计

14篇

杂七杂八

1篇

目录

评论

被折叠的  条评论

为什么被折叠?

到【灌水乐园】发言

查看更多评论

添加红包

祝福语

请填写红包祝福语或标题

红包数量

红包个数最小为10个

红包总金额

红包金额最低5元

余额支付

当前余额3.43元

前往充值 >

需支付:10.00元

取消

确定

下一步

知道了

成就一亿技术人!

领取后你会自动成为博主和红包主的粉丝

规则

hope_wisdom 发出的红包

实付元

使用余额支付

点击重新获取

扫码支付

钱包余额

0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。 2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值

网络接口EthernetV2协议(以太网第二版协议) - 学习永远没有尽头 - 博客园

网络接口EthernetV2协议(以太网第二版协议) - 学习永远没有尽头 - 博客园

会员

周边

新闻

博问

AI培训

云市场

所有博客

当前博客

我的博客

我的园子

账号设置

简洁模式 ...

退出登录

注册

登录

huangjiaping life

博客园

   

首页

   

博问   

闪存   

新随笔

   

订阅

   

管理

网络接口EthernetV2协议(以太网第二版协议)

 

一种总线型局域网--以太网

从采用的介质访问控制方法角度来看,局域网可以分为共享介质局域网与交换式局域网两种。目前被普遍采用并形成国际标准的介质访问控制方法主要有以下三种:带有冲突检测的载波侦听多路访问(CMSA/CD)方法、令牌总线(Token Bus)方法与令牌环(Token Ring)方法。

以太网(Ethernet)是由Xerox公司创建并由Xerox、Intel和DEC公司联合开发的基带局域网规范,是当今现有局域网采用的最通用的通信协议标准。它是一种总线型局域网,使用CSMA/CD技术,并以10M/S的速率运行在多种类型的电缆上。

 

局域网在结构上分为总线型、环形和星形三种拓扑结构。上图给出了实际的总线型局域网的计算机连接情况和总线型拓扑结构。它的优点是:结构简单,实现容易,易于扩展,可靠性较好。介质访问控制方法采用的是“共享介质”方式。

总线型局域网拓扑结构通常包含以下特点:

☆ 所有结点都通过网卡直接连接到一条作为公共传输介质的总线上。

☆ 总线通常采用双绞线或同轴电缆作为传输介质。

☆ 所有结点都可以通过总线发送或接收数据,但一段时间内只允许一个结点通过总线发送数据。当一个结点通过总线传输介质以“广播”方式发送数据时,其他的结点只能以“收听”方式接收数据。

☆ 总线作为公共传输介质为多个结点共享,可能出现同一时刻有两个或两个以上结点通过总线发送数据的情况,因此会出现“冲突”导致传输失败。

 

CSMA/CD协议

CSMA/CD是一种争用型的介质访问控制协议,应用在OSI的第二层数据链路层,提供了寻址和媒体存取的控制方式,使得不同设备或网络上的节点可以在多点的网络上通信而不相互冲突。

它的工作原理是: 发送数据前先侦听信道是否空闲,若空闲,则立即发送数据。若信道忙碌,则等待一段时间至信道中的信息传输结束后再发送数据;若在上一段信息发送结束后,同时有两个或两个以上的节点都提出发送请求,则判定为冲突。若侦听到冲突,则立即停止发送数据,等待一段随机时间,再重新尝试。

另外,CSMA/CD需要知道电缆的最大最小长度,最大最小帧尺寸,以确定检测冲突所需要等待的时间。CSMA/CD原理比较简单,技术上易实现,网络中各工作站处于平等地位,不需集中控制,不提供优先级控制。但在网络负载增大时,发送时间增长,发送效率急剧下降。

 

 

IEEE 802标准

1980年2月,IEEE成立了局域网标准委员会(简称IEEE 802委员会),专门从事局域网标准化工作,并制定了IEEE 802标准。IEEE 802参考模型只对应于OSI参考模型的数据链路层与物理层,它将数据链路层划分为逻辑链路控制(LLC,Logical Link Control)子层、桥接层(802.1)与介质访问控制(MAC,Media Access Control)子层。IEEE 802委员会为局域网制定了一系列标准,它们统称为IEEE 802标准。

★ IEEE 802标准主要包括以下几种:

IEEE 802.1标准  定义了局域网体系结构、网络互连以及网络管理与性能测试

IEEE 802.2标准  定义了逻辑链路控制子层功能与服务

IEEE 802.3标准  定义了CSMA/CD总线介质访问控制子层与物理层规范

IEEE 802.4标准  定义了令牌总线介质访问控制子层与物理层规范

IEEE 802.5标准  定义了令牌环介质访问控制子层与物理层规范

IEEE 802.6标准  定义了城域网介质访问控制子层与物理层规范

IEEE 802.7标准  定义了宽带网络技术

IEEE 802.8标准  定义了光纤传输技术

IEEE 802.9标准  定义了综合语音与数据局域网(1VD-LAN)技术

IEEE 802.10标准  定义了可互操作的局域网安全性规范(SILS)

IEEE 802.11标准  定义了无线局域网技术

posted on

2020-03-31 11:01 

学习永远没有尽头 

阅读(2430) 

评论(0) 

编辑 

收藏 

举报

会员力量,点亮园子希望

刷新页面返回顶部

Copyright © 2024 学习永远没有尽头

Powered by .NET 8.0 on Kubernetes

Powered By博客园

【计算机网络】局域网体系结构、以太网Ethernet详解-阿里云开发者社区

【计算机网络】局域网体系结构、以太网Ethernet详解-阿里云开发者社区

产品解决方案文档与社区权益中心定价云市场合作伙伴支持与服务了解阿里云联系我们4008013260售前咨询售后服务其他服务我要建议我要投诉备案控制台开发者社区首页探索云世界探索云世界云上快速入门,热门云上应用快速查找了解更多问产品动手实践考认证TIANCHI大赛活动广场活动广场丰富的线上&线下活动,深入探索云世界任务中心做任务,得社区积分和周边高校计划让每位学生受益于普惠算力训练营资深技术专家手把手带教话题畅聊无限,分享你的技术见解开发者评测最真实的开发者用云体验乘风者计划让创作激发创新阿里云MVP遇见技术追梦人直播技术交流,直击现场下载下载海量开发者使用工具、手册,免费下载镜像站极速、全面、稳定、安全的开源镜像技术资料开发手册、白皮书、案例集等实战精华插件为开发者定制的Chrome浏览器插件探索云世界新手上云云上应用构建云上数据管理云上探索人工智能云计算弹性计算无影存储网络倚天云原生容器serverless中间件微服务可观测消息队列数据库关系型数据库NoSQL数据库数据仓库数据管理工具PolarDB开源向量数据库热门Modelscope模型即服务弹性计算云原生数据库物联网云效DevOps龙蜥操作系统平头哥钉钉开放平台大数据大数据计算实时数仓Hologres实时计算FlinkE-MapReduceDataWorksElasticsearch机器学习平台PAI智能搜索推荐人工智能机器学习平台PAI视觉智能开放平台智能语音交互自然语言处理多模态模型pythonsdk通用模型开发与运维云效DevOps钉钉宜搭支持服务镜像站码上公益

开发者社区

安全

文章

正文

【计算机网络】局域网体系结构、以太网Ethernet详解

2023-12-21

77

版权

版权声明:

本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《

阿里云开发者社区用户服务协议》和

《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写

侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

简介:

【计算机网络】局域网体系结构、以太网Ethernet详解

扯淡散人

目录

热门文章

最新文章

为什么选择阿里云什么是云计算全球基础设施技术领先稳定可靠安全合规分析师报告产品和定价全部产品免费试用产品动态产品定价价格计算器云上成本管理解决方案技术解决方案文档与社区文档开发者社区天池大赛培训与认证权益中心免费试用高校计划企业扶持计划推荐返现计划支持与服务基础服务企业增值服务迁云服务官网公告健康看板信任中心关注阿里云关注阿里云公众号或下载阿里云APP,关注云资讯,随时随地运维管控云服务联系我们:4008013260法律声明Cookies政策廉正举报安全举报联系我们加入我们阿里巴巴集团淘宝网天猫全球速卖通阿里巴巴国际交易市场1688阿里妈妈飞猪阿里云计算AliOS万网高德UC友盟优酷钉钉支付宝达摩院淘宝海外阿里云盘饿了么© 2009-2024 Aliyun.com 版权所有 增值电信业务经营许可证: 浙B2-20080101 域名注册服务机构许可: 浙D3-20210002 京D3-20220015浙公网安备 33010602009975号浙B2-20080101-4

Ethernet协议-CSDN博客

>

Ethernet协议-CSDN博客

Ethernet协议

最新推荐文章于 2023-07-08 12:13:04 发布

bobi1024

最新推荐文章于 2023-07-08 12:13:04 发布

阅读量5.2k

收藏

7

点赞数

3

分类专栏:

TCP-IP协议栈

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。

本文链接:https://blog.csdn.net/Bob______/article/details/111703878

版权

TCP-IP协议栈

专栏收录该内容

11 篇文章

1 订阅

订阅专栏

Ethernet协议

一.定义二.封装/原理三个字段:Ethernet的地址封装原理MAC地址

一.定义

Ethernet以太网协议,用于实现链路层的数据传输和地址封装(MAC),由DIX联盟(Digital、Intel、Xero)开发

以太网和局域网的区分:

以太网:一种链路层协议局域网:一种小型网络结构

二.封装/原理

三个字段:

Destination/目的字段∶标识目的通信方的MAC地址Source/源字段∶标识发送端的MAC地址Type/类型值∶标志上层协议

Type值的作用:便于网络层知道用哪种协议拆包

Ethernet的地址封装原理

MAC地址

MAC地址: ①所有设备的MAC地址都是全球唯一的; ②MAC地址是16进制表示的,长度为48bit,采用冒号分16进制表示; 01010100 10101010 10101111 11110000 2^48 ③MAC地址前半部分被称为“OUI代码”厂商唯一标志符,用于唯一标志一个企业/公司,例如思科、TP-LINK、华为;后半部分厂商自行分配

【补充】︰以太网协议仅仅是链路层/局域网通信中的一种标准,还有其他链路层协议,令牌网、总线网、FDDI网…

关注博主即可阅读全文

优惠劵

bobi1024

关注

关注

3

点赞

7

收藏

觉得还不错?

一键收藏

知道了

0

评论

Ethernet协议

Ethernet协议定义定义Ethernet以太网协议,用于实现链路层的数据传输和地址封装(MAC),由DIX联盟(Digital、Intel、Xero)开发以太网和局域网的区分:以太网:一种链路层协议局域网:一种小型网络结构...

复制链接

扫一扫

专栏目录

海康LED显示屏协议对接

05-09

window下led显示屏协议对接。其目的只是让大家了解其中的发包结构。只需要修改ip编译即可使用。。。

Ethernet/IP协议简介.pdf

12-21

Ethernet/IP协议简介.pdf

参与评论

您还未登录,请先

登录

后发表或查看评论

摩萨moxa-5105系列MODBUS_TCP转ETHERNET协议网关使用手册v7.0.pdf

09-02

摩萨moxa-5105系列MODBUS_TCP转ETHERNET协议网关使用手册

Linux下EtherNet IP协议的实现

07-07

文中给出了在Linux下EtherNet/IP协议的实现方法。本程序也可方便的移植到嵌入式系统中,作为EtherNet/IP网络上的一个智能节点。

FLEX Ethernet协议标准

06-15

FLEX Ethernet协议标准,OIF

ABSTRACT: The Flex Ethernet (FlexE) Implementation Agreement provides a generic

mechanism for supporting a variety of Ethernet MAC rates that may or may not correspond to any

existing Ethernet PHY rate. This includes MAC rates that are both greater than (through bonding)

and less than (through sub-rate and channelization) the Ethernet PHY rates used to carry FlexE.

This can be viewed as a generalization of the Multi-Link Gearbox implementation agreements,

removing the restrictions on the number of bonded PHYs (MLG2.0, for example, supports one or

two 100GBASE-R PHYs) and the constraint that the FlexE clients correspond to Ethernet rates

(MLG2.0 supports only 10G and 40G clients).

网络协议学习之Ethernet II协议(二层)

weixin_43580872的博客

07-23

1万+

网络协议学习之Ethernet II协议简介一、协议1、协议结构2、二、抓包分析总结

简介

    Ethernet II协议位于五层OSI模型中的第二层,属于链路层的协议。

一、协议

1、协议结构

前导包

目的mac地址(DMac)

源mac地址 (SMac)

类型(Type)

数据(Playload)

校验(CRC)

6 Byte 目的地址

6 Byte 源地址

2 Byte

46 ~ 1500 Byte

2、

二、抓包分析

总结

..

接口协议(四):以太网(Ethernet)学习(一):协议

qq_40483920的博客

08-27

4万+

目录一、以太网二、网络模型三、以太网数据包格式以太网帧格式三、TCP/IP协议簇1、IP协议2、UDP协议

因为没有做过以太网的项目,也没有进行过以太网通信测试,本片博客仅仅是对以太网协议极小一部分的学习了解。如有不当之处,还请指正。

一、以太网

以太网是一种产生较早,使用相当广泛的局域网技术,局域网就是一个区域的网络互联,可以使办公室也可以是学校等等,大小规模不一。

最初是由Xerox(施乐)公司创建(大概是1973年诞生)并由Xerox、 Intel和DEC公司联合开发的基带局域网规范,后来被电气与电子

以太网完整协议(一)

yundanfengqing_nuc的专栏

05-03

6万+

一、太网中数据帧结构

以太网是目前最流行的一种局域网组网技术(其他常见局域网组网技术还有令牌环局域网、无线局域网、ATM局域网),以太网技术的正式标准是IEEE 802.3标准,它规定了在以太网中传输的数据帧结构,如下图所示。

              

在物理层上看,一个完整的以太网帧有7个字段,事实上,前两个字段并不能算是真正意义上的以太网数据帧,它们是以太网在物理层上发送

EtherNet/IP 协议结构

weixin_33858336的博客

03-05

1万+

一、Ethernet/IP 协议

将标准的TCP/IP以太网延伸 到工业实时控制并和通用工业协议(CIP)结合,将很好地帮助用户获得更加开放集成的工业自动化和信息化的整体解决方案。EtherNet/IP 就是为实现这一目的的标准工业以太网技术。Ethernet/IP是一个面向工业自动化应用的工业应用层协议。它建立在标准是由ODVA(OpenDeviceNet VendorsAssoci...

网络协议分析-Ethernet

5L2g556F5ZWl77yf

01-05

1974

以太网(Ethernet)

以太网是今TCP/IP采用的主要的局域网技术

IEEE802发布标准:

802.3(整个网络)

802.4(令牌总线网络)

802.5(令牌环网络)

TCP/IP中以太网IP数据报文的封装在RFC 894中定义,IEEE802.3网络的IP数据报文封装在RFC 1042中定义。

最常用的就是RFC 894,俗称Ethernet II 或者 Ethernet DIX

Et...

ethernet/ip协议详解、EDS文件详解

05-26

ethernet/ip协议详解、EDS文件详解,1286页

通用工业协议(EtherNet/IP) 例程_c++ ethernet,c++ profinet 协议

06-15

通用工业协议(EtherNet/IP) 例程_c++ ethernet,c++ profinet 协议

Ethernet/ip协议

06-16

EtherNet/IP(ethernet/Industrial Protocol)是由洛克威尔自动化公司开发的工业以太网通讯协定,由开放DeviceNet厂商协会(ODVA)管理,可应用在程序控制及其他自动化的应用中,是通用工业协定(CIP)中的一部分.

Ethernet/IP允许工业设备实时的交换应用信息. 采用生产者/消费者模型实时交换控制数据。Ethernet/IP使用标准的IEEE802.3技术.采用TCP/IP技术传输CIP报文

网络安全:常用协议

nnnooon的博客

07-08

2267

网络安全中常用协议详解

网络协议之以太网协议解析

tecoes的博客

04-18

1万+

Ethernet :以太网协议,用于实现链路层的数据传输和地址封装(MAC)

封装原理:

以太网的数据帧格式如下图所示:

它由6个字节的目的MAC地址,6个字节的源MAC地址,2个字节的类型域(用于标示封装在这个Frame、里面的数据的类型)。接下来是46-1500字节的数据和4字节的帧校验。

前同步码:8字节,前7个0,1交替的字节(10101010...

各种工业以太网比较(EtherCAT,EtherNet/IP,ProfiNet,Modbus-TCP,Powerlink)

热门推荐

xqmoo8的专栏

10-02

8万+

EtherCAT(以太网控制自动化技术)是一个以以太网为基础的开放架构的现场总线系统,EterCAT名称中的CAT为ControlAutomation

Technology(控制自动化技术)首字母的缩写。最初由德国倍福自动化有限公司(Beckhoff AutomationGmbH)研发。EtherCAT为系统的实时性能和拓扑的灵活性树立了新的标准,同时,它还符合甚至降低了现场总线的使用成本。E

TCP/IP讲座基础篇

weixin_33841722的博客

03-13

851

1:1层,2层,3层?

这篇文章主要是面向自学TCP/IP的读者的.因为市面上讲解计算机网络的书虽然非常多,但是个人认为没有一本可以做到深入浅出的.都是照搬某些权威书籍中的概念,使得很多读者读了之后还是没有具体概念.希望我写的东西可以让大家有个具体概念,而不是只停留在能够背出官方的,严谨的,深奥的概念.

由于本人水平有限,如果你在文章中发现了错误,请立...

(转)TCP/IP 数据包头格式

weixin_30725315的博客

05-15

824

最近狂补基础,猛看TCP/IP协议。不过,书上的东西太抽象了,没有什么数据实例,看了不 久就忘了。于是,搬来一个sniffer,抓了数据包来看,呵呵,结合书里面得讲解,理解得 比较快。我就来灌点基础知识。 

  开始吧,先介绍IP协议。 

  IP协议(Internet Protocol)是网络层协议,用在因特网上,TCP,UDP,ICMP,IGMP数据都是按照IP数据格式发送得...

工业通信协议Modbus,Profibus-DP,Devicenet和Ethernet

06-14

工业通信协议Modbus,Profibus-DP,Devicenet和Ethernet

目前在工业领域使用较为广泛的RS485接口,很多支持Modbus,Profibus-DP,Devicenet和Ethernet这几种协议;不知道大家是否对这些协议有没有研究,小弟愿意与你一起切磋切磋!

还有那个4-20mA,支持HART协议方面的!

ethernet协议

最新发布

10-25

Ethernet协议是一种局域网通信的标准之一,用于实现链路层的数据传输和地址封装(MAC)。它由DIX联盟(Digital、Intel、Xerox)开发,用于在局域网中传输数据。Ethernet协议的字段包括目标字段、源字段和类型值,...

“相关推荐”对你有帮助么?

非常没帮助

没帮助

一般

有帮助

非常有帮助

提交

bobi1024

CSDN认证博客专家

CSDN认证企业博客

码龄4年

暂无认证

45

原创

38万+

周排名

69万+

总排名

6万+

访问

等级

398

积分

1178

粉丝

82

获赞

20

评论

377

收藏

私信

关注

热门文章

C++实现单链表

11293

Ethernet协议

5217

XSS漏洞

4497

ARP攻击原理

3813

IP地址概述

3800

分类专栏

总结

1篇

设备原理与操作

4篇

hadoop

1篇

渗透全栈

3篇

C++ 数据结构

14篇

MySQL

1篇

Android学习

2篇

交换技术

1篇

路由技术

5篇

IP地址

3篇

TCP-IP协议栈

11篇

最新评论

数据结构 C++查找

匣里龙吟k:

能不能附带上运行结果啊呜呜

C++实现单链表

bobi1024:

是的,删除也要length--

C++实现单链表

甝虪:

第八个插入元素是不是得有一个length++

C++实现顺序表

bobi1024:

归并完会得到一个L3,L3调用DispList()就可以输出数据了

C++实现顺序表

zemorola:

二路归并要怎么获取顺序表的data啊

您愿意向朋友推荐“博客详情页”吗?

强烈不推荐

不推荐

一般般

推荐

强烈推荐

提交

最新文章

国内速度较快的镜像源

Docker中快速搭建hadoop3.2.1集群

XSS漏洞

2022年2篇

2021年25篇

2020年19篇

目录

目录

分类专栏

总结

1篇

设备原理与操作

4篇

hadoop

1篇

渗透全栈

3篇

C++ 数据结构

14篇

MySQL

1篇

Android学习

2篇

交换技术

1篇

路由技术

5篇

IP地址

3篇

TCP-IP协议栈

11篇

目录

评论

被折叠的  条评论

为什么被折叠?

到【灌水乐园】发言

查看更多评论

添加红包

祝福语

请填写红包祝福语或标题

红包数量

红包个数最小为10个

红包总金额

红包金额最低5元

余额支付

当前余额3.43元

前往充值 >

需支付:10.00元

取消

确定

下一步

知道了

成就一亿技术人!

领取后你会自动成为博主和红包主的粉丝

规则

hope_wisdom 发出的红包

实付元

使用余额支付

点击重新获取

扫码支付

钱包余额

0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。 2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值

什么是以太网?以太网的工作原理和用途 - 光路科技官方网站

什么是以太网?以太网的工作原理和用途 - 光路科技官方网站

产品中心

工业以太网交换机工业导轨网管交换机工业导轨非管理交换机工业机架网管交换机商用PoE交换机Bypass交换机串口交换机

行业交换机TSN交换机Auto Pro系列矿用本安型交换机电力专用交换机

工业无线

光纤收发器商用MINI光纤收发器商用PoE光纤收发器工业级PoE光纤收发器网管型光纤收发器

网络管理系统交换机云管理平台PC网络管理系统WebGUI管理

智能监控设备箱E系列智能设备箱F系列智能设备箱K系列智能设备箱智能运维管理平台

解决方案

平安城市

智慧工厂

城市污水监控

智能交通

高速公路监控

综合管廊

智慧矿山

TSN网络

关于我们

关于光路

企业文化

发展历程

资质证书

联系我们

资源市场资讯技术资讯实例探究技术支援在线留言

EN

English

什么是以太网?以太网的工作原理和用途

技术资讯

2023-01-13

Fiberroad

已复制文章链接去分享吧

微信扫码分享

已复制网页链接快去微信分享吧

什么是以太网?

以太网是一种网络技术,包括将台式机或笔记本电脑插入局域网 (LAN) 所需的协议、端口、电缆和计算机芯片,通过同轴或光纤电缆快速传输数据。

以太网是Xerox在1970年开发的一种通信技术,它通过有线连接,连接网络中的计算机。它连接局域网(LAN) 和广域网(WAN)系统。借助 LAN 和 WAN,打印机和笔记本电脑等多种设备可以跨建筑物、住宅甚至小型社区连接。

它提供了一个简单的用户界面,便于连接多个设备,包括以太网交换机、路由器和 PC。只需一个路由器和几个以太网连接,就可以构建局域网(LAN),使用户能够在所有连接的设备之间进行通信。这是因为笔记本电脑具有以太网连接器,电缆插入其中,另一端连接到路由器。

在建立以太网连接时,大多数以太网设备与慢速设备兼容,但是连接速度将由最弱的组件决定。

无线网络在许多地方已经取代了以太网,但后者在有线网络中仍然更加普遍。有线网络比无线网络更可靠,更不容易受到干扰。这是许多企业和组织继续采用以太网的主要原因。

以太网在 1998 年庆祝成立 25 周年,随着技术的进步,它经历了多次修订。以太网随着其功能的扩展和发展而不断重新设计。今天,它是全球使用最广泛的网络技术之一。

以太网是如何演变的?

以太网于 1970 年初在Xerox Palo Alto Research Center(PARC)由包括David Boggs和Robert Metcalfe在内的一个小组创建。1983年, IEEE将其批准为标准。

Robert Metcalfe在1973年为Xerox PARC撰写的一份文件中提出了以太网的概念,标志着以太网发展的开始。Robert Metcalfe基于Aloha系统构建了以太网,这是1968年在夏威夷大学开始的一项早期网络计划。他在1973年确定该技术已经超越了其最初的名称Alto Aloha Network,并将其更名为以太网。

Metcalfe和Boggs以及他们在Xerox公司的同事Charles Thacker和Butler Lampson将在四年后成功地为以太网技术注册商标。

1980年,Xerox与Digital Equipment Corporation和Intel合作创建了第一个10 Mbps以太网标准。与此同时,IEEE局域网和城域网(LAN/MAN)标准委员会着手制定等效的开放标准。LAN/MAN 委员会成立了一个以太网小组委员会,名称为 802.3。IEEE于1983年通过了第一个以太网802.3标准,并于1985年正式发布。

以太网如何工作?

以太网的工作原理是怎样的?以太网协议采用星形拓扑或线性总线,这是 IEEE 802.3 标准的基础。在 OSI 网络结构中,此协议在物理层和数据链路层(前两个级别)工作。以太网将数据连接层分为两个不同的层:逻辑链路控制层和介质访问控制 (MAC)层。

网络系统中的数据连接层主要关注将数据包从一个节点传输到另一个节点。以太网采用称为 CSMA/CD(载波检测多址/冲突检测)的访问机制,使每台计算机能够在通过网络传输数据之前侦听连接。

以太网还使用两个组件传输数据:数据包和帧。帧包含发送的数据有效负载以及以下内容:

发件人和收件人的 MAC 和物理地址用于识别传输故障的纠错数据有关虚拟局域网 (VLAN) 标记以及服务质量 (QoS) 的信息

每个帧都封装在包含许多字节数据的数据包中,以设置连接并标识帧的起始点。

以太网连接的关键组件

以太网连接包括以下内容:

以太网协议:该协议由Xerox公司在 1970 年开发。如前所述,它是一系列标准,用于控制以太网组件之间如何发送数据。以太网端口:以太网端口是计算机网络基础设施上的开口,可以插入以太网电缆。它支持带有 RJ-45 连接器的电缆。大多数计算机上的以太网连接器用于将设备连接到有线连接。计算机的以太网端口链接到安装在主板上的以太网网络适配器(也称为以太网卡)。路由器可能包含许多以太网端口,以支持各种有线网络设备。以太网网络适配器:以太网适配器是适合主板上的插槽并允许计算机连接到局域网 (LAN) 的芯片或卡。过去,这些总是与台式计算机一起使用。以太网现已集成到笔记本电脑和台式机主板的芯片组中。以太网电缆:以太网电缆(通常称为网络电缆)将计算机连接到调制解调器、路由器或以太网交换机。 以太网电缆由 RJ45 连接、内部电缆和塑料护套组成。

以太网的主要用途

以太网现在已成为当今高度互联的数字世界中几乎无处不在的技术。这是因为它:

改善消费者的互联网体验:当他们的无线Wi-Fi数据连接速度不足时,家中的许多人会部署以太网连接。以太网通常用于链接局域网 (LAN) 和广域网 (WAN) 中的多个设备。提供高带宽连接:以太网提供每秒 10、100、1000、10000、40000 和 100000 兆(Mbps) 的数据传输速率。最初创建以太网时,频段以兆每秒(Mbps) 为单位定义,但目前以千兆位每秒 (Gbps) 计算。根据预算、区域和要求提供不同的速度选项:标准以太网的最高速度为 10Mbps,而快速以太网的最高速度为 100Mbps,千兆以太网的最高速度为 1Gbps,而 10 Gb 以太网的最高速度为 10Gbps。在成本和性能之间取得平衡:以太网因其实惠的价格和与任何后续网络设备的兼容性而被广泛使用。以太网速度在1983年约为10Mbps,现在超过400Gbps。以太网因其快速的速度、网络安全和可靠性而被公司、医院、学校、大学和工业领域广泛使用。增强 Wi-Fi 网络的功能:近年来,Wi-Fi 变得越来越流行。由于技术改进,Wi-Fi提高了速度并提供广泛的覆盖范围。Wi-Fi 传输只能同时支持有限数量的设备。在频繁具有Wi-Fi盲区的旧建筑物中,以太网连接是必不可少的。实施更高的安全性:以太网具有比 Wi-Fi 更安全的优势。Wi-Fi 热点范围内的任何人都可以访问通过无线电传输的数据。由于无线电信号传递信息,因此很容易被盗。相比之下,以太网提供的数据只能在局域网上访问。支持直流(DC)电力传输:顾名思义,以太网供电 (POE) 是通过以太网连接提供能源供应。它为许多设备供电,包括闭路电视摄像机和无线接入点。以太网供电的主要优点之一是不需要不同的电源。这对于将设备放置在远离最近电源的位置特别有用。

即使在高速无线连接时代,特别是随着Wi-Fi 6的出现,以太网仍然具有相关性。对于许多地区来说,它仍然是获得互联网接入的最佳方式,大多数家庭都有连接到路由器或集线器的以太网连接。以太网交换机市场尽管已经存在多年,但仍在不断增长。对于企业而言,以太网是网络基础设施的重要组成部分。通过了解以太网的工作原理,您可以优化有线互联网连接的功能。

上一篇:什么是LLDP和LLDP-MED ? 下一篇:虚拟网络的工作原理以及对云计算、VLAN和VPN的增强猜你喜欢电子门禁(EAC)技术和PoE交换机2022-12-26网管型工业交换机对智能制造和工业自动化的重要性2023-04-18PoE工业交换机应用广泛 IEEE 802.3BT(PoE++)优势明显2023-02-14购买网络交换机的八个注意事项2023-01-12选购以太网交换机时,交换机口数越多越好吗?2023-07-22探索接入网技术发展趋势和工业以太网交换机作用2024-01-24推荐阅读什么是确定性网络?2024-01-11Auto Pro系列工业交换机 - 您的专业级自动化通信解决方案2023-11-23光路科技工业以太网交换机通过国网权威检测2023-09-26TSN技术在煤矿行业的应用前景 TSN工业交换机即将发力2023-09-13光路科技工业交换机助力智利5G网络建设2022-12-01光路科技bypass光旁路工业交换机助力宜昭高速智慧建设2022-08-11近期文章光路科技将参加第二十六届CEIC“高速展” 智慧高速新时代即将开启2024-03-08IEEE 802.1Qbv:实时网络通信的关键技术2024-02-29光路科技工业以太网交换机:工业互联网的稳定基石与智能引擎2024-02-285G时代,光路科技FR-TSN系列交换机引领工业互联网革新2024-02-23工业以太网交换机的冗余技术与备份技术2024-02-222024光路科技年会盛典:欢乐游戏,丰厚奖品,共赴美好未来!2024-01-27探索接入网技术发展趋势和工业以太网交换机作用2024-01-24网络可靠性的关键:确定性网络技术和TSN技术2024-01-12

以太网交换机工业环网交换机工业导轨网管交换机工业导轨非管理交换机工业机架网管交换机商用智能PoE交换机Bypass交换机

行业交换机TSN交换机Auto Pro系列矿用本安型交换机电力交换机工业无线系列

光纤收发器商用MINI光纤收发器商用PoE光纤收发器工业级PoE光纤收发器集中管理型收发器

解决方案平安城市智慧工厂城市污水监控智能交通高速公路监控智慧矿山综合管廊

支持技术支援联系我们隐私政策招贤纳士

联系我们广东省深圳市龙岗区坂田街道大发路龙壁工业区7栋4层+86 0755-83125459sales@fiberroad.com.cn直接留言

©2022 深圳市光路在线科技有限公司粤ICP备17018220号

扫码一对一咨询

在线留言

返回顶部

angle-upangle-downquestion-circle-oenvelopephone-handsetmap-marker

以太网_百度百科

百度百科 网页新闻贴吧知道网盘图片视频地图文库资讯采购百科百度首页登录注册进入词条全站搜索帮助首页秒懂百科特色百科知识专题加入百科百科团队权威合作下载百科APP个人中心以太网播报讨论上传视频计算机局域网技术收藏查看我的收藏0有用+10本词条由“科普中国”科学百科词条编写与应用工作项目 审核 。以太网是一种计算机局域网技术。IEEE组织的IEEE 802.3标准制定了以太网的技术标准,它规定了包括物理层的连线、电子信号和介质访问层协议的内容。以太网是应用最普遍的局域网技术,取代了其他局域网技术如令牌环、FDDI和ARCNET。中文名以太网外文名ethernet定    义局域网的一种发    源xerox(施乐)创建时间1980目录1以太网简介2以太网起源3类型介绍4经典以太网5交换式以太网6相关技术7以太网交换机8存在的问题9车载以太网10工业以太网以太网简介播报编辑以太网是现实世界中最普遍的一种计算机网络。以太网有两类:第一类是经典以太网,第二类是交换式以太网,使用了一种称为交换机的设备连接不同的计算机。经典以太网是以太网的原始形式,运行速度从3~10 Mbps不等;而交换式以太网正是广泛应用的以太网,可运行在100、1000和10000Mbps那样的高速率,分别以快速以太网、千兆以太网和万兆以太网的形式呈现。 [1]以太网的标准拓扑结构为总线型拓扑,但快速以太网(100BASE-T、1000BASE-T标准)为了减少冲突,将能提高的网络速度和使用效率最大化,使用交换机来进行网络连接和组织。如此一来,以太网的拓扑结构就成了星型;但在逻辑上,以太网仍然使用总线型拓扑和CSMA/CD(Carrier Sense Multiple Access/Collision Detection,即载波多重访问/碰撞侦测)的总线技术。以太网实现了网络上无线电系统多个节点发送信息的想法,每个节点必须获取电缆或者信道的才能传送信息,有时也叫作以太(Ether)。(这个名字来源于19世纪的物理学家假设的电磁辐射媒体-光以太。后来的研究证明光以太不存在。) 每一个节点有全球唯一的48位地址也就是制造商分配给网卡的MAC地址,以保证以太网上所有节点能互相鉴别。由于以太网十分普遍,许多制造商把以太网卡直接集成进计算机主板。以太网起源播报编辑以太网的故事始于ALOHA时期,确切的时间是在一个名叫Robert Metcalfe的学生获得麻省理工学院的学士学位后,搬到河对岸的哈佛大学攻读博士学位之后。在他学习期间,他接触到了Abramson的工作,他对此很感兴趣。从哈佛毕业之后,他决定前往施乐帕洛阿尔托研究中心正式工作之前留在夏威夷度假,以便帮助Abramson工作。当他到帕洛阿尔托研究中心,他看到那里的研究人员已经设计并建造出后来称为个人计算机的机器,但这些机器都是孤零零的;他便运用帮助Abramson工作获得的知识与同事David Boggs 设计并实现了第一个局域网。该局域网采用一个长的粗同轴电缆,以3Mbps速率运行。 [1]他们把这个系统命名为以太网,人们曾经认为通过它可以传播电磁辐射。 [1]类型介绍播报编辑早期的以太网兆比特以太网施乐以太网(Xerox Ethernet,又称“施乐以太网”)──是以太网的雏型。最初的2.94Mbit/s以太网仅在施乐公司里内部使用。而在1982年,Xerox与DEC及Intel组成DIX联盟,并共同发表了Ethernet Version 2(EV2)的规格,并将它投入商场市场,且被普遍使用。而EV2的网络就是受IEEE承认的10BASE5。10BROAD36──已经过时。一个早期的支持长距离以太网的标准。它在同轴电缆上使用,以一种类似线缆调制解调器系统的宽带调制技术。1BASE5──也称为星型局域网,速率是1Mbit/s。在商业上很失败,但同时也是双绞线的第一次使用。10Mbps以太网10BASE5(又称粗缆(Thick Ethernet)或黄色电缆)──最早实现10 Mbit/s以太网。早期IEEE标准,使用单根RG-11同轴电缆,最大距离为500米,并最多可以连接100台计算机的收发器,而缆线两端必须接上50欧姆的终端电阻。接收端透过所谓的“插入式分接头”插入电缆的内芯和屏蔽层。在电缆终结处使用N型连接器。尽管由于早期的大量布设,到现在还有一些系统在使用,这一标准实际上被10BASE2取代。10BASE2(又称细缆(Thin Ethernet)或模拟网上)── 10BASE5后的产品,使用RG-58同轴电缆,最长转输距离约200米(实际为185米),仅能连接30台计算器,计算器使用T型适配器连接到带有BNC连接器的网卡,而线路两头需要50欧姆的终结器。虽然在能力、规格上不及10BASE5,但是因为其线材较细、布线方便、成本也便宜,所以得到更广泛的使用,淘汰了10BASE5。由于双绞线的普及,它也被各式的双绞线网络取代。StarLAN──第一个双绞线上实现的以太网上标准10 Mbit/s。后发展成10BASE-T。10BASE-T──使用3类双绞线、4类双绞线、5类双绞线的4根线(两对双绞线)100米。以太网集线器或以太网交换机位于中间连接所有节点。FOIRL ──光纤中继器链路。光纤以太网上原始版本。10BASE-F ── 10Mbps以太网光纤标准通称,2公里。只有10BASE-FL应用比较广泛。10BASE-FL ── FOIRL标准一种升级。10BASE-FB ──用于连接多个Hub或者交换机的骨干网技术,已废弃。10BASE-FP ──无中继被动星型网,没有实际应用的案例。100Mbps以太网(快速以太网)参见:百兆以太网快速以太网(Fast Ethernet)为IEEE在1995年发表的网上标准,能提供达100Mbps的传输速度。100BASE-T-- 下面三个100 Mbit/s双绞线标准通称,最远100米。100BASE-TX-- 类似于星型结构的10BASE-T。使用2对电缆,但是需要5类电缆以达到100Mbit/s。100BASE-T4 -- 使用3类电缆,使用所有4对线,半双工。由于5类线普及,已废弃。100BASE-T2 -- 无产品。使用3类电缆。支持全双工使用2对线,功能等效100BASE-TX,但支持旧电缆。100BASE-FX-- 使用多模光纤,最远支持400米,半双工连接 (保证冲突检测),2km全双工。100VG AnyLAN -- 只有惠普支持,VG最早出现在市场上。需要4对三类电缆。也有人怀疑VG不是以太网。 [2]1Gbps以太网1000BASE-T-- 1 Gbit/s介质超五类双绞线或6类双绞线。1000BASE-SX-- 1 Gbit/s多模光纤(取决于频率以及光纤半径,使用多模光纤时最长距离在220M至550M之间)。1000BASE-LX-- 1 Gbit/s多模光纤(小于550M)、单模光纤(小于5000M)。1000BASE-LX10-- 1 Gbit/s单模光纤(小于10KM)。长距离方案1000BASE-LHX--1 Gbit/s单模光纤(10KM至40KM)。长距离方案1000BASE-ZX--1 Gbit/s单模光纤(40KM至70KM)。长距离方案1000BASE-CX-- 铜缆上达到1Gbps的短距离(小于25 m)方案。早于1000BASE-T,已废弃。10Gbps以太网参见:10吉比特以太网新的万兆以太网标准包含7种不同类型,分别适用于局域网、城域网和广域网。使用附加标准IEEE 802.3ae,将来会合并进IEEE 802.3标准。10GBASE-CX4 -- 短距离铜缆方案用于InfiniBand4x连接器和CX4电缆,最大长度15米。10GBASE-SR -- 用于短距离多模光纤,根据电缆类型能达到26-82米,使用新型2GHz多模光纤可以达到300米。10GBASE-LX4 -- 使用波分复用支持多模光纤240-300米,单模光纤超过10公里。10GBASE-LR和10GBASE-ER -- 透过单模光纤分别支持10公里和40公里10GBASE-SW、10GBASE-LW、10GBASE-EW。用于广域网PHY、OC-192 / STM-64同步光纤网/SDH设备。物理层分别对应10GBASE-SR、10GBASE-LR和10GBASE-ER,因此使用相同光纤支持距离也一致。(无广域网PHY标准)10GBASE-T-- 使用屏蔽或非屏蔽双绞线,使用CAT-6A类线至少支持100米传输。CAT-6类线也在较短的距离上支持10GBASE-T。100Gbps以太网参见:100G以太网新的40G/100G以太网标准在2010年中制定完成,包含若干种不同的节制类型。使用附加标准IEEE 802.3ba。40GBASE-KR4 -- 背板方案,最少距离1米。40GBASE-CR4 / 100GBASE-CR10 -- 短距离铜缆方案,最大长度大约7米。40GBASE-SR4 / 100GBASE-SR10 -- 用于短距离多模光纤,长度至少在100米以上。40GBASE-LR4 / 100GBASE-LR10 -- 使用单模光纤,距离超过10公里。100GBASE-ER4 -- 使用单模光纤,距离超过40公里。 [2]经典以太网播报编辑经典以太网用一个长电缆蜿蜒围绕着建筑物,这根电缆连接着所有的计算机。经典以太网的体系结构如下图《以太网》所示:以太网物理层以太网的每个版本都有电缆的最大长度限制(即无须放大的长度),这个范围内的信号可以正常传播,超过这个范围信号将无法传播。为了允许建设更大的网络,可以用中继器把多条电缆连接起来。中继器是一个物理层设备,它能接收、放大并在两个方向上重发信号。 [1]在这些电缆上,信息的发送使用曼彻斯特编码。 [1]MAC子层经典以太网使用1-坚持CSMA/CD算法,即当站有帧要发送时要侦听介质,一旦介质变为空闲便立即发送。在它们发送的同时监测信道上是否有冲突。如果有冲突,则立即终止传输,并发出一个短冲突加强信号,再等待一段随机时间后重发。 [1]交换式以太网播报编辑以太网的发展很快,从单根长电缆的典型以太网结构开始演变。单根电缆存在的问题,比如找出断裂或者松动位置等连接相关的问题,驱使人们开发出一种不同类型的布线模式。在这种模式中,每个站都有一条专用电线连接到一个中央集线器。集线器只是在电气上简单地连接所有连接线,就像把它们焊接在一起。集线器不能增加容量,因为它们逻辑上等同于单根电缆的经典以太网。随着越来越多的站加入,每个站获得的固定容量共享份额下降。最终,LAN将饱和。 [1]还有另一条出路可以处理不断增长的负载:即交换式以太网。交换式以太网的核心是一个交换机,它包含一块连接所有端口的高速背板。从外面看交换机很像集线器,它们都是一个盒子,通常拥有4-48个端口,每个端口都有一个标准的RJ-45连接器用来连接双绞电缆。交换机只把帧输出到该帧想去的端口。通过简单的插入或者拔出电缆就能完成添加或者删除一台机器,而且由于片状电缆或者端口通常只影响到一台机器,因此大多数错误都很容易被发现。这种配置模式仍然存在一个共享组件出现故障的问题,即交换机本身的故障:如果所有站都失去了网络连接,则IT人员知道该怎么解决这个问题:更换整个交换机。 [1]交换式以太网体系结构如下:以太网结构相关技术播报编辑共享介质带冲突检测的载波侦听多路访问(CSMA/CD)技术规定了多台计算机共享一个通道的方法。这项技术最早出现在1960年代由夏威夷大学开发的ALOHAnet,它使用无线电波为载体。这个方法要比令牌环网或者主控制网简单。当某台计算机要发送信息时,在以下行动与状态之间进行转换:1.开始- 如果线路空闲,则启动传输,否则跳转到第4步。2.发送- 如果检测到冲突,继续发送数据直到达到最小回报时间(min echo receive interval)以确保所有其他转发器和终端检测到冲突,而后跳转到第4步。3.成功传输- 向更高层的网络协议报告发送成功,退出传输模式。4.线路繁忙- 持续等待直到线路空闲。5.线路空闲- 在尚未达到最大尝试次数之前,每隔一段随机时间转到第1步重新尝试。6.超过最大尝试传输次数- 向更高层的网络协议报告发送失败,退出传输模式。因为所有的通信信号都在共享线路上传输,即使信息只是想发给其中的一个终端(destination),却会使用广播的形式,发送给线路上的所有计算机。在正常情况下,网络接口卡会滤掉不是发送给自己的信息,接收到目标地址是自己的信息时才会向CPU发出中断请求,除非网卡处于混杂模式(Promiscuous mode)。这种“一个说,大家听”的特质是共享介质以太网在安全上的弱点,因为以太网上的一个节点可以选择是否监听线路上传输的所有信息。共享电缆也意味着共享带宽,所以在某些情况下以太网的速度可能会非常慢,比如电源故障之后,当所有的网络终端都重新启动时。中继器因为信号的衰减和延时,根据不同的介质以太网段有距离限制。例如,10BASE5同轴电缆最长距离500米 (1,640英尺)。最大距离可以通过以太网中继器实现,中继器可以把电缆中的信号放大再传送到下一段。中继器最多连接5个网段,但是只能有4个设备(即一个网段最多可以接4个中继器)。这可以减轻因为电缆断裂造成的问题:当一段同轴电缆断开,所有这个段上的设备就无法通讯,中继器可以保证其他网段正常工作。类似于其他的高速总线,以太网网段必须在两头以电阻器作为终端。对于同轴电缆,电缆两头的终端必须接上被称作“终端器”的50欧姆的电阻和散热器,如果不这么做,就会发生类似电缆断掉的情况:总线上的AC信号当到达终端时将被反射,而不能消散。被反射的信号将被认为是冲突,从而使通信无法继续。中继器可以将连在其上的两个网段进行电气隔离,增强和同步信号。大多数中继器都有被称作“自动隔离”的功能,可以把有太多冲突或是冲突持续时间太长的网段隔离开来,这样其他的网段不会受到损坏部分的影响。中继器在检测到冲突消失后可以恢复网段的连接。集线器采用集线器组网的以太网尽管在物理上是星型结构,但在逻辑上仍然是总线型的,半双工的通信方式采用CSMA/CD的冲突检测方法,集线器对于减少数据包冲突的作用很小。每一个数据包都被发送到集线器的每一个端口,所以带宽和安全问题仍没有解决。集线器的总传输量受到单个连接速度的限制(10或100 Mbit/s),这还是考虑在前同步码、传输间隔、标头、档尾和封装上都是最小花费的情况。当网络负载过重时,冲突也常常会降低传输量。最坏的情况是,当许多用长电缆组成的主机传送很多非常短的帧(frame)时,可能因冲突过多导致网络的负载在仅50%左右程度就满载。为了在冲突严重降低传输量之前尽量提高网络的负载,通常会先做一些设定以避免类似情况发生。以太网交换机播报编辑测试项目性能指标使用专用的以太网测试仪器进行测试,这些性能指标的测试结果还可以评估LAN系统是否满足验收要求。从GBT21671-2008“基于以太网的LAN系统验收评估规范”可以了解到局域网还可以通过测量诸如网络吞吐量,传输延迟和丢包率等性能指标来判断性能。以太网测试仪是一 款适合现场使用的坚固耐用的测试平台。它具有完整的以太网测试功能,双光口和双电口,以太网服务接口模块,HST-3000支持多种数据流测试。包括10/100/1000M以太网链路的流量生成和故障排除,它可以测试高达1Gbit/s的电气和光纤端口链路。由于验收检查中的各种条件的限制,可以支持点对点或路由网络的测试以用于交换机的例行测试。 [3]存在的问题现代测试仪器的整体特性是高可靠性,高性能和高适用性。因此,国内测试产品与国外产品之间的差距反映在这方面。虽然国内某些测试设备在一定的性能指标上接近国际先进水平,但具有达到国际标准的综合设备性能指标的产品普遍较少。此外,国内测试仪器大多是常见的规格,不能满足某些特殊环境下的测试工作。低度自动化测试也是一个常见问题。 [3]交换机测试技术如今,交换机以应用需求为向导对交换机的性能提出了新的要求。在网络综合服务、安全性、智能化等方面有了新的发展。协议测试是一种基本交换机测试技术,网络协议是为了提高测试的效率和沟通的有效性提出的为了保障通信的规则。在网络通信日益膨胀的年代,网络协议也必不可少,网络协议的基本要求是功能正确、互通性好和性能优越。协议测试最初的原型为软件测试,主要的分类有黑盒测试、白盒测试和灰盒测试。 [3]存在的问题播报编辑吞吐量是以太网测试的一项重要指标。很多工程师认为以太网交换吞吐量应该为其线速率,即100%流量下不能出现丢包,并且认为以太网帧间隔IFG小于96bits是非法的。但在以太网交换吞吐量及丢包率测试中,经常在线速条件下长时间误码测试会出现少量的丢包,究其原因为以太网跨时钟域架构所导致的。 [4]工业以太网技术的迅速发展和应用的同时,伴随出现了大量的网络问题。根据西门子公司提供的统计数据,网络通信故障率占70%以上,网络设备故障率不足30%。网络故障导致系统停机后,故障诊断和定位所需的时间占系统停机总时间的80%以上,而维护措施所占时间不足20%。因此网络流量实时监控和分析是工业以太网发展 和应用中面临的重大问题,实时监控和分析工业以太网网络流量,及时发现和定位网络问题对提高整个系统的稳定运行起到了至关重要的作用。 [5]车载以太网播报编辑传统以太网协议由于采用的是载波监听多路访问及冲突检测技术。因此,在数据包延时、排序和可靠性上达不到车载网络实时性要求,所以,常见的车载局域网仍是基于CAN的实时现场总线协议。但随着汽车电子技术的爆发式发展,ECU数量不断增长,影音娱乐信号也纳入车内通信,这使得高实时、低带宽的传统车载总线开始不适应汽车电 子发展趋势。 [6]国际电子电气工程师协会(IEEE)经过长期研究在2016年批准了第一个车载以太网标准 “100BASE-T1”,其基于博通公司的BroadR.Reach 解决方案,在物理层用单对非屏蔽双绞线电缆,采用更加优化的扰码算法来减弱信号相关性增加实时性,可在车内提供100Mbps高实时带宽。 [6]高速以太网在汽车干扰环境下的通信质量是 需要重点考查的问题。特别对于100BASE.T1网络采用的是非屏蔽的电缆,更容易受到电流浪涌、电磁干扰的影响,导致其性能不稳定甚至功能失效。有基于以太网物理层的一致性测试方法,用于测试信号发射设备的回波损耗、定时抖动和最大输出跌落等性能;RFC2544标准提供了以太网时延、吞吐量和丢包率等主要性能指标的测试方法; 但这些常见方法都是基于传统以太网,不支持 100BASE-TI车载以太网,并且没有考虑到车载环境的干扰特征。 [6]工业以太网播报编辑工业以太网技术源自于以太网技术,但是其本身和普通的 以太网技术又存在着很大的差异和区别。工业以太网技术本身进行了适应性方面的调整,同时结合工业生产安全性和稳定性方面的需求,增加了相应的控制应用功能,提出了符合特定工业应用场所需求的相应的解决方案。工业以太网技术在实际应用中,能够满足工业生产高效性、稳定性、实时性、经济性、智能性、扩展性等多方面的需求,可以真正延伸到实际企业生产过程中现场设备的控制层面,并结合其技术应用的特点,给予实际企业工业生产过程的全方位控制和管理,是一种非常重要的技术手段。 [7]工业以太网技术应用的优势分析如下:第一,工业以太网技术具有广泛的应用范围。以太网技术本身作为重要的基础性计算机网络技术,其本身能够兼容多种不同的编程语言。例如,常见的JAVA、C++等编程语言都支持以太网方面的应用开发。 [7]第二,工业以太网技术具有良好的应用经济性。相对于以往传统工业生产当中现场总线网卡的基础设施方面的投入,以太网的网卡成本方面具有十分显著的优势。在当前以太网技术不断发展的今天,整体以太网技术的设计、应用方面已经十分成熟。在具体技术开发方面,有着很多现有的资源和设计案例进行应用,这也进一步降低了系统的开发和推广成本,同时也让后续培训工作的开展变得更加有效率。可以说,经济性强、成本低廉、应用效率高、过渡短、方案成熟,这是工业以太网技术的一个显著优势特征。 [7]第三,工业以太网技术具有较高的通信速率。相对现场总线来说,工业以太网的通信速率较高,1Gb/s的技术应用也变得十分成熟。在当前不断增长的工业控制网络性能吞吐需求的前提下,这种速率上的优势十分明显,其能够更好地满足当前的带宽标准,是新时期现代工业生产网络工程的重要发展方向。相对上也控制网络来说,工业控制网络内部不同节点的实时数据了相对较少,但是其对于传输的实时性方面要求很高。以太网技术本身的网络负载方面有着显著的优势,这也让整个通信过程的实时性需求得到了更好的满足。良好的通信速率标准,可以进一步降低网络负荷,减少网络传输延时,从而最大限度规避忘了碰撞的概率,保障工业生产的安全性与可靠性。 [7]第四,工业以太网技术具有良好的共享能力。随着当前网络技术的不断发展和成熟化,整个互联网体系变得更加成熟,任何一个接入到网络当中的计算机,都可以实现对工业控制现场相关数据的浏览和调用,这对于远程管控应用来说具有良好的优势,同时这也超越了以往现场总线管理模式的便利性,是实现现代化工业生产管理的重要基础性依据。 [7]第五,工业以太网技术具有良好的发展空间。通过工业以太网技术的应用,整个工业网络控制系统本身会具备一个更加广阔的发展空间和前景。在后续技术改造和升级的过程中,以太网技术能够为其提供一个良好的基础平台,这种扩展性方面的优势相比于现场总线技术来说是十分明显的。与此同时,在当前人工智能等相关技术发展的环境下,网络通信质量和效率本身的标准更高,很多新通信协议的应用,这也需要工业以太网技术给予相应的支持。 [7]新手上路成长任务编辑入门编辑规则本人编辑我有疑问内容质疑在线客服官方贴吧意见反馈投诉建议举报不良信息未通过词条申诉投诉侵权信息封禁查询与解封©2024 Baidu 使用百度前必读 | 百科协议 | 隐私政策 | 百度百科合作平台 | 京ICP证030173号 京公网安备110000020000

以太网 - 维基百科,自由的百科全书

以太网 - 维基百科,自由的百科全书

跳转到内容

主菜单

主菜单

移至侧栏

隐藏

导航

首页分类索引特色内容新闻动态最近更改随机条目资助维基百科

帮助

帮助维基社群方针与指引互助客栈知识问答字词转换IRC即时聊天联络我们关于维基百科

搜索

搜索

创建账号

登录

个人工具

创建账号 登录

未登录编辑者的页面 了解详情

贡献讨论

目录

移至侧栏

隐藏

序言

1历史

2概述

3CSMA/CD共享介质以太网

4以太网中继器和集线器

5桥接和交换

6类型

开关类型子章节

6.1早期的以太网

6.210Mbps乙太網

6.3100Mbps以太网(快速以太网)

6.41Gbps以太网

6.510Gbps以太网

6.6100Gbps以太网

7参考文献

8参見

9外部链接

开关目录

以太网

76种语言

AfrikaansالعربيةAsturianuAzərbaycancaБеларускаяБългарскиবাংলাBrezhonegBosanskiCatalàکوردیČeštinaDanskDeutschΕλληνικάEnglishEsperantoEspañolEestiEuskaraفارسیSuomiVõroFrançaisGaeilgeGalegoગુજરાતીGaelgעבריתहिन्दीHrvatskiMagyarBahasa IndonesiaÍslenskaItaliano日本語Қазақшаಕನ್ನಡ한국어KurdîLatinaLëtzebuergeschLombardLietuviųLatviešuМакедонскиമലയാളംमराठीBahasa MelayuNederlandsNorsk nynorskNorsk bokmålਪੰਜਾਬੀPolskiپښتوPortuguêsRomânăРусскийSrpskohrvatski / српскохрватскиSimple EnglishSlovenčinaSlovenščinaShqipСрпски / srpskiSvenskaதமிழ்తెలుగుไทยTagalogTürkçeУкраїнськаاردوTiếng Việt吴语ייִדיש粵語

编辑链接

条目讨论

不转换

不转换简体繁體大陆简体香港繁體澳門繁體大马简体新加坡简体臺灣正體

阅读编辑查看历史

工具

工具

移至侧栏

隐藏

操作

阅读编辑查看历史

常规

链入页面相关更改上传文件特殊页面固定链接页面信息引用本页获取短URL下载二维码维基数据项目

打印/导出

下载为PDF打印页面

在其他项目中

维基共享资源

维基百科,自由的百科全书

電腦網路的類型

依覆盖范围排序列表

纳米网络

近場通訊(NFC)

藍牙

體域網

個人區域網絡(PAN)

 无线个人网

局域网(LAN)

 有线局域网

  以太网

  令牌环

  光纤分布式数据接口

 无线局域网(WLAN)

  Wi-Fi

  ZigBee

  Thread

  MMDS

  SMDS

 虚拟局域网(VLAN)

家庭网络(英语:Home network)(HAN)

存储区域网络(SAN)

园区网络(CAN)

骨幹網

城域网(MAN)

广域网(WAN)

 异步传输模式

 帧中继

 同步数字体系(SDH)

企业专用网络

虛擬私人網路(VPN)

雲端(英语:Internet area network)

互联网

星际互联网(IPN)

查论编

「Ethernet」的各地常用名稱笔记本电脑上已插上网路线的以太网接口中国大陸以太网 臺灣乙太網路

以太网(英語:Ethernet)是一种计算机局域网技术。IEEE組織的IEEE 802.3标准制定了以太网的技术标准,它规定了包括物理层的连线、电子信号和介质访问控制的内容。以太网是目前应用最普遍的局域网技术,取代了其他局域网标准如令牌环、FDDI和ARCNET。

以太网的标准拓扑结构为总线型拓扑,但目前的快速以太网(100BASE-T、1000BASE-T标准)为了减少冲突,將能提高的网络速度和使用效率最大化,使用交换机(Switch hub)来进行网络连接和组织。如此一來,以太网的拓扑结构就成了星型;但在逻辑上,以太网仍然使用总线型拓扑和CSMA/CD(Carrier Sense Multiple Access/Collision Detection,即載波多重存取/碰撞偵測)的总线技术。

历史[编辑]

以太网技术起源於施樂帕洛阿尔托研究中心的先锋技术项目。人们通常认为以太网发明于1973年,当年鲍勃.梅特卡夫(Bob Metcalfe)给他PARC的老板写了一篇有关以太网潜力的备忘录。但是梅特卡夫本人认为以太网是之后几年才出现的。在1976年,梅特卡夫和他的助手David Boggs发表了一篇名为《以太网:區域计算机网络的分布式封包交换技术》的文章。

網際網路协议套組

應用層

BGP

DHCP

DNS

FTP

HTTP

HTTPS

IMAP

LDAP

MGCP(英语:Media Gateway Control Protocol)

MQTT

NNTP

NTP

POP

ONC/RPC

RTP

RTSP

SIP

SMTP

SNMP

Telnet

TLS/SSL

SSH

XMPP

更多...

傳輸層

TCP

UDP

DCCP

SCTP

RSVP

更多...

網路層

IP

IPv4

IPv6

ICMP

ICMPv6

ECN

IGMP

OSPF

IPsec

RIP

更多...

連結層

ARP

NDP

Tunnels

L2TP

PPP

MAC

Ethernet

DSL

ISDN

FDDI

更多...

查论编

1979年,梅特卡夫为了开发个人电脑和局域网离开了施乐(Xerox),成立了3Com公司。3Com对DEC、英特尔和施乐进行游说,希望与他们一起将以太网标准化、规范化。这个通用的以太网标准于1980年9月30日提出。当时业界有两个流行的非公用网络标准令牌环网和ARCNET,在以太网浪潮的冲击下他们很快萎缩并被取代。而在此过程中,3Com也成了一个国际化的大公司。

梅特卡夫曾经开玩笑说,Jerry Saltzer为3Com的成功作出了贡献。Saltzer在一篇[哪個/哪些?]与他人合著的很有影响力的论文中指出,在理论上令牌环网要比以太网优越。受到此结论的影响,很多电脑厂商或犹豫不决或决定不把以太网接口做为机器的标准配置,这样3Com才有机会从销售以太网网卡大赚。这种情况也导致了另一种说法“以太网不适合在理论中研究,只适合在实际中应用”。也许只是句玩笑话,但这说明了这样一个技术观点:通常情况下,网络中实际的数据流特性与人们在局域网普及之前的估计不同,而正是因为以太网简单的结构才使局域网得以普及。梅特卡夫和Saltzer曾经在麻省理工学院MAC项目(Project MAC)的同一层楼工作,当时他正在做自己的哈佛大学毕业论文,在此期间奠定了以太网技术的理论基础。[來源請求]

概述[编辑]

1990年代的以太网网卡或叫NIC(Network Interface Card,以太网适配器)。这张卡可以支持基于同轴电缆的10BASE2 (BNC连接器,左)和基于双绞线的10BASE-T(RJ-45,右)。

以太网實作了网络上无线电系统多个节点发送信息的想法,每个节点必须取得电缆或者信道才能传送信息,有时也叫作以太(Ether)。这个名字来源于19世纪的物理学家假设的电磁辐射媒体——光以太。 每一个节点有全球唯一的48位地址也就是制造商分配给网卡的MAC地址,以保证以太网上所有節點能互相鉴别。由于以太网十分普遍,许多制造商把以太网卡直接集成进计算机主板。

以太网通讯具有自相关性的特点,这对于电信通讯工程十分重要。

CSMA/CD共享介质以太网[编辑]

带冲突检测的载波侦听多路访问(CSMA/CD)技术规定了多台电脑共享一个通道的方法。这项技术最早出现在1960年代由夏威夷大学开发的ALOHAnet,它使用无线电波为载体。这个方法要比令牌环网或者主控制网简单。当某台电脑要发送信息时,在以下行動與狀態之間進行轉換:

开始 - 如果线路空闲,则启动传输,否则跳转到第4步。

发送 - 如果检测到冲突,继续发送数据直到达到最小回報时间(min echo receive interval)以確保所有其他转发器和终端检测到冲突,而後跳轉到第4步。

成功传输 - 向更高层的网络协议报告发送成功,退出传输模式。

線路繁忙 - 持續等待直到线路空闲。

线路空闲 - 在尚未達到最大尝试次數之前,每隔一段随机时间转到第1步重新嘗試。

超过最大尝试传输次数 - 向更高层的网络协议报告发送失败,退出传输模式。

就像在没有主持人的座谈会中,所有的参加者都透過一个共同的媒介(空气)来相互交谈。每个参加者在讲话前,都礼貌地等待别人把话讲完。如果两个客人同时开始讲话,那么他们都停下来,分别随机等待一段时间再开始讲话。这时,如果两个参加者等待的时间不同,冲突就不会出现。如果传输失败超过一次,将延遲指数增长时间後再次嘗試。延遲的时间通过截斷二進位指數後移(英语:Exponential_backoff)(truncated binary exponential backoff)演算法来实现。

最初的以太网是采用同轴电缆来連接各个设备的。电脑透過一个叫做附加单元接口(Attachment Unit Interface,AUI)的收发器连接到电缆上。一條简单网路线对于一个小型网络来说很可靠,而对于大型网络来说,某处线路的故障或某个连接器的故障,都会造成以太网某个或多个网段的不稳定。

因为所有的通信信号都在共用线路上传输,即使信息只是想发给其中的一个终端(destination),卻會使用廣播的形式,發送給線路上的所有電腦。在正常情况下,网络接口卡会滤掉不是发送给自己的信息,接收到目标地址是自己的信息时才会向CPU发出中断请求,除非网卡处于混杂模式(Promiscuous mode)。这种“一个说,大家听”的特质是共享介质以太网在安全上的弱点,因为以太网上的一个节点可以选择是否监听线路上传输的所有信息。共享电缆也意味着共享带宽,所以在某些情况下以太网的速度可能会非常慢,比如电源故障之后,当所有的网络终端都重新启动时。

以太网中继器和集线器[编辑]

在以太网技术的发展中,以太网集线器(Ethernet Hub)的出现使得网络更加可靠,接线更加方便。

因为信号的衰减和延时,根据不同的介质以太网段有距离限制。例如,10BASE5同轴电缆最长距离500米 (1,640英尺)。最大距离可以透過以太网中继器实现,中继器可以把电缆中的信号放大再传送到下一段。中继器最多连接5个网段,但是只能有4个设备(即一个网段最多可以接4个中继器)。这可以减轻因为电缆断裂造成的问题:当一段同轴电缆断开,所有这个段上的设备就无法通讯,中继器可以保证其他网段正常工作。

类似于其他的高速总线,以太网网段必须在两头以电阻器作为终端。对于同轴电缆,电缆两头的终端必须接上被称作“终端器”的50欧姆的电阻和散热器,如果不这么做,就会发生类似电缆断掉的情况:总线上的AC信号当到达终端时将被反射,而不能消散。被反射的信号将被认为是冲突,从而使通信无法继续。中继器可以将连在其上的两个网段进行电气隔离,增强和同步信号。大多数中继器都有被称作“自动隔离”的功能,可以把有太多冲突或是冲突持续时间太长的网段隔离开来,这样其他的网段不会受到损坏部分的影响。中继器在检测到冲突消失后可以恢复网段的连接。

随着应用的拓展,人们逐渐发现星型的网络拓扑结构最为有效,于是设备厂商们开始研制有多个端口的中继器。多端口中继器就是众所周知的集线器(Hub)。集线器可以连接到其他的集线器或者同轴网络。

第一个集线器被认为是“多端口收发器”或者叫做“fanouts”。最著名的例子是DEC的DELNI,它可以使许多台具有AUI连接器的主机共用一个收发器。集线器也导致了不使用同轴电缆的小型独立以太网网段的出现。

像DEC和SynOptics这样的网络设备制造商曾经出售过用于连接许多10BASE-2细同轴线网段的集线器。

非屏蔽双绞线(unshielded twisted-pair cables , UTP)最先应用在星型局域网中,之后也在10BASE-T中应用,最後取代了同轴电缆成为以太网的标准。这项改进之后,RJ45电话接口代替了AUI成为电脑和集线器的标准線路,非屏蔽3类双绞线/5类双绞线成为标准载体。集线器的应用使某条电缆或某个设备的故障不会影响到整个网络,提高了以太网的可靠性。双绞线以太网把每一个网段点对点地连起来,这样终端就可以做成一个标准的硬件,解决了以太网的终端问题。

采用集线器组网的以太网尽管在物理上是星型结构,但在逻辑上仍然是总线型的,半双工的通信方式采用CSMA/CD的冲突检测方法,集线器对于减少封包冲突的作用很小。每一个数据包都被发送到集线器的每一个端口,所以带宽和安全问题仍没有解决。集线器的总傳輸量受到单个连接速度的限制(10或100 Mbit/s),这还是考虑在前同步码、傳輸間隔、檔頭、檔尾和封裝上都是最小花費的情况。当网络负载过重时,冲突也常常会降低傳輸量。最坏的情况是,当许多用长电缆组成的主机传送很多非常短的帧(frame)时,可能因衝突過多導致网络的负载在仅50%左右程度就滿載。为了在冲突严重降低傳輸量之前尽量提高网络的负载,通常会先做一些设定以避免類似情況發生。

桥接和交换[编辑]

尽管中继器在某些方面分隔了以太网网段,使得电缆断线的故障不会影响到整个网络,但它向所有的以太网设备转发所有的数据。这严重限制了同一个以太网网络上可以相互通信的机器数量。为了减轻这个问题,桥接方法被采用,在工作在物理层的中继器之基础上,桥接工作在数据链路层。透過橋接器时,只有格式完整的数据包才能从一个网段进入另一个网段;冲突和数据包错误则都被隔离。透過记录分析网络上设备的MAC地址,网桥可以判断它们都在什么位置,这样它就不会向非目标设备所在的网段传递数据包。像生成树协议这样的控制机制可以协调多个交换机共同工作。

早期的网桥要检测每一个数据包,因此當同时处理多个端口的时候,数据转发比Hub(中继器)來得慢。1989年网络公司Kalpana发明了EtherSwitch,第一台以太网交换机。以太网交换机把桥接功能用硬件实现,这样就能保证转发数据速率达到线速。

大多数现代以太网用以太网交换机代替Hub。尽管布线方式和Hub以太网相同,但交换式以太网比共享介质以太网有很多明显的优势,例如更大的带宽和更好的异常结果隔离设备。交换网络典型的使用星型拓扑,雖然设备在半双工模式下運作時仍是共享介质的多節点网,但10BASE-T和以后的标准皆為全双工以太网,不再是共享介质系统。

交换机啟動后,一開始也和Hub一樣,转发所有数据到所有端口。接下来,当它記錄了每个端口的地址以后,他就只把非广播数据发送给特定的目的端口。因此线速以太网交换可以在任何端口对之间实现,所有端口对之间的通讯互不干扰。

因为数据包一般只是发送到他的目的端口,所以交换式以太网上的流量要略微小于共享介质式以太网。然而,交换式以太网仍然是不安全的网络技术,因为它很容易因为ARP欺骗或者MAC满溢而瘫痪,同时网络管理员也可以利用监控功能抓取网络数据包。

当只有简单设备(除Hub之外的设备)連接交换机端口時,整个网络可能處於全双工模式。如果一个网段只有2个设备,那么冲突探测也不需要了,两个设备可以随时收发数据。這時总带宽是鏈路的2倍,雖然雙方的頻寬相同,但没有发生冲突就意味着几乎能利用到100%的带宽。

交换机端口和所连接的设备必须使用相同的双工设置。多数100BASE-TX和1000BASE-T设备支持自动协商特性,即这些设备透過信号来协调要使用的速率和双工设置。然而,如果自动协商功能被關閉或者设备不支持,则双工设置必须透過自动检测进行设置或在交换机端口和设备上都进行手工设置以避免双工错配——这是以太网问题的一种常见原因(设备被设置为半双工会报告迟发冲突,而设备被设为全双工则会报告runt)。许多較低層級的交换机没有手工进行速率和双工设置的能力,因此端口总是会尝试进行自动协商。当启用了自动协商但不成功时(例如其他设备不支持),自动协商会将端口设置为半双工。速率是可以自动感测的,因此将一个10BASE-T设备连接到一个启用了自动协商的10/100交换端口上时将可以成功地建立一个半双工的10BASE-T连接。但是将一个配置为全双工100Mb工作的设备连接到一个配置为自动协商的交换端口时(反之亦然)则会导致双工错配。

即使电缆两端都设置成自动速率和双工模式协商,错误猜测还是经常发生而退到10Mbps模式。因此,如果性能差于预期,应该查看一下是否有计算机设置成10Mbps模式了,如果已知另一端配置为100Mbit,则可以手动强制设置成正确模式。

当两个节点试图用超过电缆最高支持数据速率(例如在3类线上使用100Mbps或者3类/5类线使用1000Mbps)通信时就会发生问题。不像ADSL或者传统的拨号Modem透過详细的方法检测鏈路的最高支持数据速率,以太网节点只是简单的选择两端支持的最高速率而不管中间线路,因此如果速率过高就会导致鏈路失效。解决方案為强制通讯端降低到电缆支持的速率。

类型[编辑]

除了以上提到的不同帧类型以外,各类以太网的差别仅在速率和配线。因此,同样的网络协议栈软件可以在大多数以太网上执行。

以下的章节简要综述了不同的正式以太网类型。除了这些正式的标准以外,许多厂商因为一些特殊的原因,例如为了支持更长距离的光纤传输,而制定了一些专用的标准。

很多以太网卡和交换设备都支持多速率,设备之间透過自动协商设置最佳的连接速度和双工方式。如果协商失败,多速率设备就会探测另一方使用的速率但是默认为半双工方式。10/100以太网端口支持10BASE-T和100BASE-TX。10/100/1000支持10BASE-T、100BASE-TX和1000BASE-T。

部分以太网类型[1]

速度

常用名称

非正式的IEEE标准名称

正式的IEEE标准名称

线缆类型

最大传输距离

10Mbps

以太网

10BASE-T

802.3

双绞线

100m

100Mbps

快速以太网

100BASE-T

802.3u

双绞线

100m

1Gbps

吉比特以太网

1000BASE-LX

802.3z

光纤

5000m

1Gbps

吉比特以太网

1000BASE-T

802.3ab

双绞线

100m

10Gbps

10吉比特以太网

10GBASE-T

802.3an

双绞线

100m

早期的以太网[编辑]

参见:兆比特以太网

施乐以太网(Xerox Ethernet,又稱「全錄乙太網」)──是乙太網的雛型。最初的2.94Mbit/s以太网僅在全錄公司裡內部使用。而在1982年,Xerox與DEC及Intel組成DIX聯盟,並共同發表了Ethernet Version 2(EV2)的規格,並將它投入商場市場,且被普遍使用。而EV2的網絡就是目前受IEEE承認的10BASE5。[2]

10BROAD36 ──已经过时。一个早期的支持长距离以太网的标准。它在同轴电缆上使用,以一种类似线缆调制解调器系统的宽带调制技术。

1BASE5 ──也稱為星型局域网,速率是1Mbit/s。在商业上很失败,但同時也是双绞线的第一次使用。

10Mbps乙太網[编辑]

10BASE-T電纜

参见:十兆以太网

10BASE5(又稱粗纜(Thick Ethernet)或黃色電纜)──最早實現10 Mbit/s以太網。早期IEEE標準,使用單根RG-11同軸電纜,最大距離為500米,並最多可以連接100台電腦的收發器,而纜線兩端必須接上50歐姆的終端電阻。接收端透過所謂的「插入式分接頭」插入電纜的內芯和屏蔽層。在電纜終結處使用N型連接器。儘管由於早期的大量布設,到現在還有一些系統在使用,這一標準實際上被10BASE2取代。

10BASE2(又稱細纜(Thin Ethernet)或模擬網路)── 10BASE5後的產品,使用RG-58同軸電纜,最長轉輸距離約200米(實際為185米),僅能連接30台計算機,計算機使用T型適配器連接到帶有BNC連接器的網卡,而線路兩頭需要50歐姆的終結器。雖然在能力、規格上不及10BASE5,但是因為其線材較細、佈線方便、成本也便宜,所以得到更廣泛的使用,淘汰了10BASE5。由於雙絞線的普及,它也被各式的雙絞線網絡取代。

StarLAN ──第一個雙絞線上實現的以太網路標準10 Mbit/s。後發展成10BASE-T。

10BASE-T ──使用3類雙絞線、4類雙絞線、5類雙絞線的4根線(兩對雙絞線)100米。以太網集線器或以太網交換機位於中間連接所有節點。

FOIRL ──光纖中繼器鏈路。光纖以太網路原始版本。

10BASE-F ── 10Mbps以太網光纖標準通稱,2公里。只有10BASE-FL應用比較廣泛。

10BASE-FL ── FOIRL標準一種升級。

10BASE-FB ──用於連接多個Hub或者交換機的骨幹網技術,已廢棄。

10BASE-FP ──無中繼被動星型網,沒有實際應用的案例。

100Mbps以太网(快速以太网)[编辑]

参见:百兆以太网

快速以太网(Fast Ethernet)為IEEE在1995年發表的網路標準,能提供達100Mbps的傳輸速度。[2]

100BASE-T -- 下面三个100 Mbit/s双绞线标准通称,最远100米。

100BASE-TX -- 类似于星型结构的10BASE-T。使用2对电缆,但是需要5类电缆以达到100Mbit/s。

100BASE-T4 -- 使用3类电缆,使用所有4对线,半双工。由于5类线普及,已废弃。

100BASE-T2 -- 无产品。使用3类电缆。支持全双工使用2对线,功能等效100BASE-TX,但支持旧电缆。

100BASE-FX -- 使用多模光纤,最远支持400米,半双工连接 (保证冲突检测),2km全双工。

100VG AnyLAN -- 只有惠普支持,VG最早出现在市场上。需要4对三类电缆。也有人怀疑VG不是以太网。

苹果的千兆以太网络接口

1Gbps以太网[编辑]

参见:吉比特以太网

1000BASE-SX的光信號與電氣信號轉換器

1000BASE-T -- 1 Gbit/s介质超五类双绞线或6类双绞线。

1000BASE-SX -- 1 Gbit/s多模光纤(取決於頻率以及光纖半徑,使用多模光纖時最長距離在220M至550M之間)。[3]

1000BASE-LX -- 1 Gbit/s多模光纤(小於550M)、單模光纖(小於5000M)。[4]

1000BASE-LX10 -- 1 Gbit/s单模光纤(小于10KM)。长距离方案

1000BASE-LHX --1 Gbit/s单模光纤(10KM至40KM)。长距离方案

1000BASE-ZX --1 Gbit/s单模光纤(40KM至70KM)。长距离方案

1000BASE-CX -- 铜缆上达到1Gbps的短距离(小于25 m)方案。早于1000BASE-T,已废弃。

10Gbps以太网[编辑]

参见:10吉比特乙太網路

新的万兆以太网标准包含7种不同类型,分別适用于局域网、城域网和广域网。目前使用附加标准IEEE 802.3ae,将来会合并进IEEE 802.3标准。

10GBASE-CX4 -- 短距离铜缆方案用于InfiniBand 4x连接器和CX4电缆,最大长度15米。

10GBASE-SR -- 用于短距离多模光纤,根据电缆类型能达到26-82米,使用新型2GHz多模光纤可以达到300米。

10GBASE-LX4 -- 使用波分复用支持多模光纤240-300米,单模光纤超过10公里。

10GBASE-LR和10GBASE-ER -- 透過单模光纤分别支持10公里和40公里

10GBASE-SW、10GBASE-LW、10GBASE-EW。用于广域网PHY、OC-192 / STM-64 同步光纤网/SDH设备。物理层分别对应10GBASE-SR、10GBASE-LR和10GBASE-ER,因此使用相同光纤支持距离也一致。(无广域网PHY标准)

10GBASE-T -- 使用屏蔽或非屏蔽双绞线,使用CAT-6A类线至少支持100米传输。CAT-6类线也在较短的距离上支持10GBASE-T。

100Gbps以太网[编辑]

参见:100吉比特以太网

新的40G/100G以太网标准在2010年中制定完成,包含若干种不同的节制类型。目前使用附加标准IEEE 802.3ba。

40GBASE-KR4 -- 背板方案,最少距离1米。

40GBASE-CR4 / 100GBASE-CR10 -- 短距离铜缆方案,最大长度大约7米。

40GBASE-SR4 / 100GBASE-SR10 -- 用于短距离多模光纤,长度至少在100米以上。

40GBASE-LR4 / 100GBASE-LR10 -- 使用单模光纤,距离超过10公里。

100GBASE-ER4 -- 使用单模光纤,距离超过40公里。

参考文献[编辑]

^ Wendell Odom. CCENT/CCNA ICND1 100-105 Official Cert Guide. Cisco Press. 2016: 43页. ISBN 978-1-58720-580-4. 

^ 2.0 2.1 Internet協定觀念與實作ISBN 9577177069

^ IEEE 802.3-2008 Section 3 Table 38-2 p.109

^ IEEE 802.3-2008 Section 3 Table 38-6 p.111

参見[编辑]

5类双绞线

RJ45

Power over Ethernet

MII and PHY

网络唤醒

1G以太网

10G以太网

100G以太网

1000G以太网

虚拟局域网

生成树协议

通讯

Internet

以太网帧格式

外部链接[编辑]

IEEE 802.3 2002年标准(页面存档备份,存于互联网档案馆)

万兆以太网(页面存档备份,存于互联网档案馆)

以太网帧格式(页面存档备份,存于互联网档案馆)

万兆IP以太网白皮书

千兆以太网(1000BaseT)(页面存档备份,存于互联网档案馆)

查论编局域网技术之以太网家族速度

10Mbit/s

双绞线以太网

100Mbit/s

1Gbit/s

2.5和5Gbit/s

10Gbit/s

25和50Gbit/s(英语:25 Gigabit Ethernet)

40和100Gbit/s

200Gbit/s和400Gbit/s

常规

IEEE 802.3

乙太網路實體層(英语:Ethernet physical layer)

自动协商(英语:Autonegotiation)

以太网供电

以太类型

以太网联盟(英语:Ethernet Alliance)

流控制

巨型帧

历史

CSMA/CD

StarLAN(英语:StarLAN)

10BROAD36(英语:10BROAD36)

10BASE-FB(英语:10BASE-FB)

10BASE-FL(英语:10BASE-FL)

10BASE5(英语:10BASE5)

10BASE2(英语:10BASE2)

100BaseVG(英语:100BaseVG)

LattisNet(英语:LattisNet)

长距离(英语:Long Reach Ethernet)

应用程序

音频(英语:Audio over Ethernet)

运营商(英语:Carrier Ethernet)

数据中心(英语:Data center bridging)

高能效以太网

第一英里(英语:Ethernet in the first mile)

10G-EPON(英语:10G-EPON)

工業以太網

以太网供电

同步(英语:Synchronous Ethernet)

收发器

MAU(英语:Medium Attachment Unit)

GBIC

SFP

XENPAK

X2

XFP

SFP+

QSFP(英语:QSFP)

CFP(英语:C Form-factor Pluggable)

接口

AUI(英语:Attachment Unit Interface)

MDI

MII

GMII

XGMII

XAUI

分类

维基共享

查论编網際網路存取有线网络

线缆(英语:Cable Internet access)

拨号

DOCSIS

DSL

以太网

FTTx

G.hn(英语:G.hn)

HD-PLC

HomePlug

HomePNA(英语:HomePNA)

IEEE 1901(英语:IEEE 1901)

ISDN

MoCA(英语:Multimedia over Coax Alliance)

PON

电力线

宽带

无线个人局域网

藍牙

Li-Fi

无线USB

无线局域网

Wi-Fi

无线广域网

DECT

EV-DO

GPRS

HSPA

HSPA+

iBurst(英语:iBurst)

LTE

MMDS

Muni Wi-Fi

WiMAX

WiBro

卫星上网

查论编IEEE標準当前标准

488

754

Revision(英语:IEEE 754 revision)

829

830

1003

1014-1987(英语:VMEbus)

1016

1076

1149.1

1164(英语:IEEE 1164)

1219

1233

1275(英语:Open Firmware)

1278(英语:Distributed Interactive Simulation)

1284(英语:IEEE 1284)

1355(英语:IEEE 1355)

1364

1394

1451(英语:IEEE 1451)

1471(英语:IEEE 1471)

1491

1516(英语:High-level architecture (simulation))

1541-2002

1547(英语:IEEE 1547)

1584(英语:IEEE 1584)

1588(英语:Precision Time Protocol)

1596(英语:Scalable Coherent Interface)

1603(英语:IEEE 1603)

1613(英语:IEEE 1613)

1667(英语:IEEE 1667)

1675(英语:IEEE 1675-2008)

1685(英语:IP-XACT)

1800

1801(英语:Unified Power Format)

1900(英语:DySPAN)

1901(英语:IEEE 1901)

1902(英语:RuBee)

11073(英语:ISO/IEEE 11073)

12207(英语:IEEE 12207)

2030(英语:IEEE 2030)

14764

16085

16326

42010(英语:ISO/IEC 42010)

802系列802.1

p

Q

Qat(英语:Stream Reservation Protocol)

Qay(英语:Provider Backbone Bridge Traffic Engineering)

X

ad

AE(英语:IEEE 802.1AE)

ag(英语:IEEE 802.1ag)

ah(英语:IEEE 802.1ah-2008)

ak(英语:Multiple Registration Protocol)

aq

ax

802.11

Legacy

a

b

d(英语:IEEE 802.11d-2001)

e(英语:IEEE 802.11e-2005)

f(英语:Inter-Access Point Protocol)

g

h(英语:IEEE 802.11h-2003)

i(英语:IEEE 802.11i-2004)

j(英语:IEEE 802.11j-2004)

k(英语:IEEE 802.11k-2008)

n (Wi-Fi 4)

p

r

s

u(英语:IEEE 802.11u)

v(英语:IEEE 802.11v)

w(英语:IEEE 802.11w-2009)

y(英语:IEEE 802.11y-2008)

ac (Wi-Fi 5)

ad (WiGig)

af

ah

ai

aj

aq

ax (Wi-Fi 6)

ay (WiGig 2)

be (Wi-Fi 7)

.2

.3

.4

.5

.6(英语:IEEE 802.6)

.7(英语:IEEE 802.7)

.8

.9(英语:IEEE 802.9)

.10(英语:IEEE 802.10)

.12(英语:IEEE 802.12)

.15

.15.4(英语:IEEE 802.15.4)

.15.4a(英语:IEEE 802.15.4a)

.16

.18(英语:IEEE 802.18)

.20(英语:IEEE 802.20)

.21(英语:IEEE 802.21)

.22建议标准

P1363(英语:IEEE P1363)

P1619

P1823(英语:Universal Power Adapter for Mobile Devices)

过时标准

754-1985(英语:IEEE 754-1985)

854-1987(英语:IEEE 854-1987)

另见

IEEE標準協會

Category:IEEE标准

查论编电子计算机基本部件输入设备

鍵盤

數字鍵盤

影像掃描器

显示卡

圖形處理器

麦克风

定点设备

数码绘图板

游戏控制器

光筆(英语:Light pen)

鼠标

光學

指点杆

触摸板

觸控式螢幕

轨迹球

盲文显示机

声卡

聲音處理器(英语:Sound chip)

摄像头

虛擬(英语:Softcam)

输出设备

顯示器

螢幕

盲文显示机

打印机

繪圖儀(英语:Plotter)

揚聲器(英语:Computer speakers)

声卡

显示卡

移动存储

磁碟組(英语:Disk pack)

软盘

光碟

CD

DVD

BD

闪存

記憶卡

闪存盘

机箱

中央处理器

微处理器

主板

記憶體

隨機存取

BIOS

數據存貯器

硬盘

固态硬盘

混合固态硬盘

電源供應器

開關模式電源

金屬氧化物半導體場效電晶體

功率

電壓調節模組

网卡

傳真數據機(英语:Fax modem)

擴充卡

接口(英语:Computer port (hardware))

以太网

FireWire

並列

序列

PS/2

USB

Thunderbolt

DisplayPort/HDMI/DVI/VGA

SATA

TRS

规范控制

AAT: 300266018

GND: 4127501-9

J9U: 987007555681905171

LCCN: sh85045087

取自“https://zh.wikipedia.org/w/index.php?title=以太网&oldid=81300354”

分类:​乙太網路计算机总线隐藏分类:​含有英語的條目自2014年12月有非常模棱两可或者十分空泛语句的条目自2024年2月有未列明来源语句的条目包含AAT标识符的维基百科条目包含GND标识符的维基百科条目包含J9U标识符的维基百科条目包含LCCN标识符的维基百科条目

本页面最后修订于2024年2月19日 (星期一) 10:07。

本站的全部文字在知识共享 署名-相同方式共享 4.0协议之条款下提供,附加条款亦可能应用。(请参阅使用条款)

Wikipedia®和维基百科标志是维基媒体基金会的注册商标;维基™是维基媒体基金会的商标。

维基媒体基金会是按美国国內稅收法501(c)(3)登记的非营利慈善机构。

隐私政策

关于维基百科

免责声明

行为准则

开发者

统计

Cookie声明

手机版视图

开关有限宽度模式

以太网 - 维基百科,自由的百科全书

以太网 - 维基百科,自由的百科全书

跳转到内容

主菜单

主菜单

移至侧栏

隐藏

导航

首页分类索引特色内容新闻动态最近更改随机条目资助维基百科

帮助

帮助维基社群方针与指引互助客栈知识问答字词转换IRC即时聊天联络我们关于维基百科

搜索

搜索

创建账号

登录

个人工具

创建账号 登录

未登录编辑者的页面 了解详情

贡献讨论

目录

移至侧栏

隐藏

序言

1历史

2概述

3CSMA/CD共享介质以太网

4以太网中继器和集线器

5桥接和交换

6类型

开关类型子章节

6.1早期的以太网

6.210Mbps以太网

6.3100Mbps以太网(快速以太网)

6.41Gbps以太网

6.510Gbps以太网

6.6100Gbps以太网

7参考文献

8参见

9外部链接

开关目录

以太网

76种语言

AfrikaansالعربيةAsturianuAzərbaycancaБеларускаяБългарскиবাংলাBrezhonegBosanskiCatalàکوردیČeštinaDanskDeutschΕλληνικάEnglishEsperantoEspañolEestiEuskaraفارسیSuomiVõroFrançaisGaeilgeGalegoગુજરાતીGaelgעבריתहिन्दीHrvatskiMagyarBahasa IndonesiaÍslenskaItaliano日本語Қазақшаಕನ್ನಡ한국어KurdîLatinaLëtzebuergeschLombardLietuviųLatviešuМакедонскиമലയാളംमराठीBahasa MelayuNederlandsNorsk nynorskNorsk bokmålਪੰਜਾਬੀPolskiپښتوPortuguêsRomânăРусскийSrpskohrvatski / српскохрватскиSimple EnglishSlovenčinaSlovenščinaShqipСрпски / srpskiSvenskaதமிழ்తెలుగుไทยTagalogTürkçeУкраїнськаاردوTiếng Việt吴语ייִדיש粵語

编辑链接

条目讨论

大陆简体

不转换简体繁體大陆简体香港繁體澳門繁體大马简体新加坡简体臺灣正體

阅读编辑查看历史

工具

工具

移至侧栏

隐藏

操作

阅读编辑查看历史

常规

链入页面相关更改上传文件特殊页面固定链接页面信息引用本页获取短URL下载二维码维基数据项目

打印/导出

下载为PDF可打印版

在其他项目中

维基共享资源

维基百科,自由的百科全书

电脑网络的类型

依覆盖范围排序列表

纳米网络

近场通信(NFC)

蓝牙

体域网

个人局域网(PAN)

 无线个人网

局域网(LAN)

 有线局域网

  以太网

  令牌环

  光纤分布式数据接口

 无线局域网(WLAN)

  Wi-Fi

  ZigBee

  Thread

  MMDS

  SMDS

 虚拟局域网(VLAN)

家庭网络(英语:Home network)(HAN)

存储区域网络(SAN)

园区网络(CAN)

骨干网

城域网(MAN)

广域网(WAN)

 异步传输模式

 帧中继

 同步数字体系(SDH)

企业专用网络

虚拟专用网(VPN)

云端(英语:Internet area network)

互联网

星际互联网(IPN)

查论编

“Ethernet”的各地常用名称笔记本电脑上已插上网路线的以太网接口中国大陆以太网 台湾乙太网路

以太网(英语:Ethernet)是一种计算机局域网技术。IEEE组织的IEEE 802.3标准制定了以太网的技术标准,它规定了包括物理层的连线、电子信号和介质访问控制的内容。以太网是目前应用最普遍的局域网技术,取代了其他局域网标准如令牌环、FDDI和ARCNET。

以太网的标准拓扑结构为总线型拓扑,但目前的快速以太网(100BASE-T、1000BASE-T标准)为了减少冲突,将能提高的网络速度和使用效率最大化,使用交换机(Switch hub)来进行网络连接和组织。如此一来,以太网的拓扑结构就成了星型;但在逻辑上,以太网仍然使用总线型拓扑和CSMA/CD(Carrier Sense Multiple Access/Collision Detection,即载波多重访问/碰撞侦测)的总线技术。

历史[编辑]

以太网技术起源于施乐帕洛阿尔托研究中心的先锋技术项目。人们通常认为以太网发明于1973年,当年鲍勃.梅特卡夫(Bob Metcalfe)给他PARC的老板写了一篇有关以太网潜力的备忘录。但是梅特卡夫本人认为以太网是之后几年才出现的。在1976年,梅特卡夫和他的助手David Boggs发表了一篇名为《以太网:区域计算机网络的分布式数据包交换技术》的文章。

互联网协议套组

应用层

BGP

DHCP

DNS

FTP

HTTP

HTTPS

IMAP

LDAP

MGCP(英语:Media Gateway Control Protocol)

MQTT

NNTP

NTP

POP

ONC/RPC

RTP

RTSP

SIP

SMTP

SNMP

Telnet

TLS/SSL

SSH

XMPP

更多...

传输层

TCP

UDP

DCCP

SCTP

RSVP

更多...

网络层

IP

IPv4

IPv6

ICMP

ICMPv6

ECN

IGMP

OSPF

IPsec

RIP

更多...

链接层

ARP

NDP

Tunnels

L2TP

PPP

MAC

Ethernet

DSL

ISDN

FDDI

更多...

查论编

1979年,梅特卡夫为了开发个人电脑和局域网离开了施乐(Xerox),成立了3Com公司。3Com对DEC、英特尔和施乐进行游说,希望与他们一起将以太网标准化、规范化。这个通用的以太网标准于1980年9月30日提出。当时业界有两个流行的非公用网络标准令牌环网和ARCNET,在以太网浪潮的冲击下他们很快萎缩并被取代。而在此过程中,3Com也成了一个国际化的大公司。

梅特卡夫曾经开玩笑说,Jerry Saltzer为3Com的成功作出了贡献。Saltzer在一篇[哪个/哪些?]与他人合著的很有影响力的论文中指出,在理论上令牌环网要比以太网优越。受到此结论的影响,很多电脑厂商或犹豫不决或决定不把以太网接口做为机器的标准配置,这样3Com才有机会从销售以太网网卡大赚。这种情况也导致了另一种说法“以太网不适合在理论中研究,只适合在实际中应用”。也许只是句玩笑话,但这说明了这样一个技术观点:通常情况下,网络中实际的数据流特性与人们在局域网普及之前的估计不同,而正是因为以太网简单的结构才使局域网得以普及。梅特卡夫和Saltzer曾经在麻省理工学院MAC项目(Project MAC)的同一层楼工作,当时他正在做自己的哈佛大学毕业论文,在此期间奠定了以太网技术的理论基础。[来源请求]

概述[编辑]

1990年代的以太网网卡或叫NIC(Network Interface Card,以太网适配器)。这张卡可以支持基于同轴电缆的10BASE2 (BNC连接器,左)和基于双绞线的10BASE-T(RJ-45,右)。

以太网实现了网络上无线电系统多个节点发送信息的想法,每个节点必须获取电缆或者信道才能传送信息,有时也叫作以太(Ether)。这个名字来源于19世纪的物理学家假设的电磁辐射媒体——光以太。 每一个节点有全球唯一的48位地址也就是制造商分配给网卡的MAC地址,以保证以太网上所有节点能互相鉴别。由于以太网十分普遍,许多制造商把以太网卡直接集成进计算机主板。

以太网通讯具有自相关性的特点,这对于电信通讯工程十分重要。

CSMA/CD共享介质以太网[编辑]

带冲突检测的载波侦听多路访问(CSMA/CD)技术规定了多台电脑共享一个通道的方法。这项技术最早出现在1960年代由夏威夷大学开发的ALOHAnet,它使用无线电波为载体。这个方法要比令牌环网或者主控制网简单。当某台电脑要发送信息时,在以下行动与状态之间进行转换:

开始 - 如果线路空闲,则启动传输,否则跳转到第4步。

发送 - 如果检测到冲突,继续发送数据直到达到最小回报时间(min echo receive interval)以确保所有其他转发器和终端检测到冲突,而后跳转到第4步。

成功传输 - 向更高层的网络协议报告发送成功,退出传输模式。

线路繁忙 - 持续等待直到线路空闲。

线路空闲 - 在尚未达到最大尝试次数之前,每隔一段随机时间转到第1步重新尝试。

超过最大尝试传输次数 - 向更高层的网络协议报告发送失败,退出传输模式。

就像在没有主持人的座谈会中,所有的参加者都通过一个共同的介质(空气)来相互交谈。每个参加者在讲话前,都礼貌地等待别人把话讲完。如果两个客人同时开始讲话,那么他们都停下来,分别随机等待一段时间再开始讲话。这时,如果两个参加者等待的时间不同,冲突就不会出现。如果传输失败超过一次,将延迟指数增长时间后再次尝试。延迟的时间通过截断二进制指数后移(英语:Exponential_backoff)(truncated binary exponential backoff)算法来实现。

最初的以太网是采用同轴电缆来连接各个设备的。电脑通过一个叫做附加单元接口(Attachment Unit Interface,AUI)的收发器连接到电缆上。一条简单网路线对于一个小型网络来说很可靠,而对于大型网络来说,某处线路的故障或某个连接器的故障,都会造成以太网某个或多个网段的不稳定。

因为所有的通信信号都在共享线路上传输,即使信息只是想发给其中的一个终端(destination),却会使用广播的形式,发送给线路上的所有电脑。在正常情况下,网络接口卡会滤掉不是发送给自己的信息,接收到目标地址是自己的信息时才会向CPU发出中断请求,除非网卡处于混杂模式(Promiscuous mode)。这种“一个说,大家听”的特质是共享介质以太网在安全上的弱点,因为以太网上的一个节点可以选择是否监听线路上传输的所有信息。共享电缆也意味着共享带宽,所以在某些情况下以太网的速度可能会非常慢,比如电源故障之后,当所有的网络终端都重新启动时。

以太网中继器和集线器[编辑]

在以太网技术的发展中,以太网集线器(Ethernet Hub)的出现使得网络更加可靠,接线更加方便。

因为信号的衰减和延时,根据不同的介质以太网段有距离限制。例如,10BASE5同轴电缆最长距离500米 (1,640英尺)。最大距离可以通过以太网中继器实现,中继器可以把电缆中的信号放大再传送到下一段。中继器最多连接5个网段,但是只能有4个设备(即一个网段最多可以接4个中继器)。这可以减轻因为电缆断裂造成的问题:当一段同轴电缆断开,所有这个段上的设备就无法通讯,中继器可以保证其他网段正常工作。

类似于其他的高速总线,以太网网段必须在两头以电阻器作为终端。对于同轴电缆,电缆两头的终端必须接上被称作“终端器”的50欧姆的电阻和散热器,如果不这么做,就会发生类似电缆断掉的情况:总线上的AC信号当到达终端时将被反射,而不能消散。被反射的信号将被认为是冲突,从而使通信无法继续。中继器可以将连在其上的两个网段进行电气隔离,增强和同步信号。大多数中继器都有被称作“自动隔离”的功能,可以把有太多冲突或是冲突持续时间太长的网段隔离开来,这样其他的网段不会受到损坏部分的影响。中继器在检测到冲突消失后可以恢复网段的连接。

随着应用的拓展,人们逐渐发现星型的网络拓扑结构最为有效,于是设备厂商们开始研制有多个端口的中继器。多端口中继器就是众所周知的集线器(Hub)。集线器可以连接到其他的集线器或者同轴网络。

第一个集线器被认为是“多端口收发器”或者叫做“fanouts”。最著名的例子是DEC的DELNI,它可以使许多台具有AUI连接器的主机共享一个收发器。集线器也导致了不使用同轴电缆的小型独立以太网网段的出现。

像DEC和SynOptics这样的网络设备制造商曾经出售过用于连接许多10BASE-2细同轴线网段的集线器。

非屏蔽双绞线(unshielded twisted-pair cables , UTP)最先应用在星型局域网中,之后也在10BASE-T中应用,最后取代了同轴电缆成为以太网的标准。这项改进之后,RJ45电话接口代替了AUI成为电脑和集线器的标准线路,非屏蔽3类双绞线/5类双绞线成为标准载体。集线器的应用使某条电缆或某个设备的故障不会影响到整个网络,提高了以太网的可靠性。双绞线以太网把每一个网段点对点地连起来,这样终端就可以做成一个标准的硬件,解决了以太网的终端问题。

采用集线器组网的以太网尽管在物理上是星型结构,但在逻辑上仍然是总线型的,半双工的通信方式采用CSMA/CD的冲突检测方法,集线器对于减少数据包冲突的作用很小。每一个数据包都被发送到集线器的每一个端口,所以带宽和安全问题仍没有解决。集线器的总传输量受到单个连接速度的限制(10或100 Mbit/s),这还是考虑在前同步码、传输间隔、标头、档尾和封装上都是最小花费的情况。当网络负载过重时,冲突也常常会降低传输量。最坏的情况是,当许多用长电缆组成的主机传送很多非常短的帧(frame)时,可能因冲突过多导致网络的负载在仅50%左右程度就满载。为了在冲突严重降低传输量之前尽量提高网络的负载,通常会先做一些设定以避免类似情况发生。

桥接和交换[编辑]

尽管中继器在某些方面分隔了以太网网段,使得电缆断线的故障不会影响到整个网络,但它向所有的以太网设备转发所有的数据。这严重限制了同一个以太网网络上可以相互通信的机器数量。为了减轻这个问题,桥接方法被采用,在工作在物理层的中继器之基础上,桥接工作在数据链路层。通过网桥时,只有格式完整的数据包才能从一个网段进入另一个网段;冲突和数据包错误则都被隔离。通过记录分析网络上设备的MAC地址,网桥可以判断它们都在什么位置,这样它就不会向非目标设备所在的网段传递数据包。像生成树协议这样的控制机制可以协调多个交换机共同工作。

早期的网桥要检测每一个数据包,因此当同时处理多个端口的时候,数据转发比Hub(中继器)来得慢。1989年网络公司Kalpana发明了EtherSwitch,第一台以太网交换机。以太网交换机把桥接功能用硬件实现,这样就能保证转发数据速率达到线速。

大多数现代以太网用以太网交换机代替Hub。尽管布线方式和Hub以太网相同,但交换式以太网比共享介质以太网有很多明显的优势,例如更大的带宽和更好的异常结果隔离设备。交换网络典型的使用星型拓扑,虽然设备在半双工模式下运作时仍是共享介质的多节点网,但10BASE-T和以后的标准皆为全双工以太网,不再是共享介质系统。

交换机启动后,一开始也和Hub一样,转发所有数据到所有端口。接下来,当它记录了每个端口的地址以后,他就只把非广播数据发送给特定的目的端口。因此线速以太网交换可以在任何端口对之间实现,所有端口对之间的通讯互不干扰。

因为数据包一般只是发送到他的目的端口,所以交换式以太网上的流量要略微小于共享介质式以太网。然而,交换式以太网仍然是不安全的网络技术,因为它很容易因为ARP欺骗或者MAC满溢而瘫痪,同时网络管理员也可以利用监控功能抓取网络数据包。

当只有简单设备(除Hub之外的设备)连接交换机端口时,整个网络可能处于全双工模式。如果一个网段只有2个设备,那么冲突探测也不需要了,两个设备可以随时收发数据。这时总带宽是链路的2倍,虽然双方的带宽相同,但没有发生冲突就意味着几乎能利用到100%的带宽。

交换机端口和所连接的设备必须使用相同的双工设置。多数100BASE-TX和1000BASE-T设备支持自动协商特性,即这些设备通过信号来协调要使用的速率和双工设置。然而,如果自动协商功能被关闭或者设备不支持,则双工设置必须通过自动检测进行设置或在交换机端口和设备上都进行手工设置以避免双工错配——这是以太网问题的一种常见原因(设备被设置为半双工会报告迟发冲突,而设备被设为全双工则会报告runt)。许多较低层级的交换机没有手工进行速率和双工设置的能力,因此端口总是会尝试进行自动协商。当启用了自动协商但不成功时(例如其他设备不支持),自动协商会将端口设置为半双工。速率是可以自动感测的,因此将一个10BASE-T设备连接到一个启用了自动协商的10/100交换端口上时将可以成功地创建一个半双工的10BASE-T连接。但是将一个配置为全双工100Mb工作的设备连接到一个配置为自动协商的交换端口时(反之亦然)则会导致双工错配。

即使电缆两端都设置成自动速率和双工模式协商,错误猜测还是经常发生而退到10Mbps模式。因此,如果性能差于预期,应该查看一下是否有计算机设置成10Mbps模式了,如果已知另一端配置为100Mbit,则可以手动强制设置成正确模式。

当两个节点试图用超过电缆最高支持数据速率(例如在3类线上使用100Mbps或者3类/5类线使用1000Mbps)通信时就会发生问题。不像ADSL或者传统的拨号Modem通过详细的方法检测链路的最高支持数据速率,以太网节点只是简单的选择两端支持的最高速率而不管中间线路,因此如果速率过高就会导致链路失效。解决方案为强制通讯端降低到电缆支持的速率。

类型[编辑]

除了以上提到的不同帧类型以外,各类以太网的差别仅在速率和配线。因此,同样的网络协议栈软件可以在大多数以太网上执行。

以下的章节简要综述了不同的正式以太网类型。除了这些正式的标准以外,许多厂商因为一些特殊的原因,例如为了支持更长距离的光纤传输,而制定了一些专用的标准。

很多以太网卡和交换设备都支持多速率,设备之间通过自动协商设置最优的连接速度和双工方式。如果协商失败,多速率设备就会探测另一方使用的速率但是默认为半双工方式。10/100以太网端口支持10BASE-T和100BASE-TX。10/100/1000支持10BASE-T、100BASE-TX和1000BASE-T。

部分以太网类型[1]

速度

常用名称

非正式的IEEE标准名称

正式的IEEE标准名称

线缆类型

最大传输距离

10Mbps

以太网

10BASE-T

802.3

双绞线

100m

100Mbps

快速以太网

100BASE-T

802.3u

双绞线

100m

1Gbps

吉比特以太网

1000BASE-LX

802.3z

光纤

5000m

1Gbps

吉比特以太网

1000BASE-T

802.3ab

双绞线

100m

10Gbps

10吉比特以太网

10GBASE-T

802.3an

双绞线

100m

早期的以太网[编辑]

参见:兆比特以太网

施乐以太网(Xerox Ethernet,又称“全录以太网”)──是以太网的雏型。最初的2.94Mbit/s以太网仅在施乐公司里内部使用。而在1982年,Xerox与DEC及Intel组成DIX联盟,并共同发表了Ethernet Version 2(EV2)的规格,并将它投入商场市场,且被普遍使用。而EV2的网络就是目前受IEEE承认的10BASE5。[2]

10BROAD36 ──已经过时。一个早期的支持长距离以太网的标准。它在同轴电缆上使用,以一种类似线缆调制解调器系统的宽带调制技术。

1BASE5 ──也称为星型局域网,速率是1Mbit/s。在商业上很失败,但同时也是双绞线的第一次使用。

10Mbps以太网[编辑]

10BASE-T电缆

参见:十兆以太网

10BASE5(又称粗缆(Thick Ethernet)或黄色电缆)──最早实现10 Mbit/s以太网。早期IEEE标准,使用单根RG-11同轴电缆,最大距离为500米,并最多可以连接100台电脑的收发器,而缆线两端必须接上50欧姆的终端电阻。接收端通过所谓的“插入式分接头”插入电缆的内芯和屏蔽层。在电缆终结处使用N型连接器。尽管由于早期的大量布设,到现在还有一些系统在使用,这一标准实际上被10BASE2取代。

10BASE2(又称细缆(Thin Ethernet)或模拟网络)── 10BASE5后的产品,使用RG-58同轴电缆,最长转输距离约200米(实际为185米),仅能连接30台计算机,计算机使用T型适配器连接到带有BNC连接器的网卡,而线路两头需要50欧姆的终结器。虽然在能力、规格上不及10BASE5,但是因为其线材较细、布线方便、成本也便宜,所以得到更广泛的使用,淘汰了10BASE5。由于双绞线的普及,它也被各式的双绞线网络取代。

StarLAN ──第一个双绞线上实现的以太网络标准10 Mbit/s。后发展成10BASE-T。

10BASE-T ──使用3类双绞线、4类双绞线、5类双绞线的4根线(两对双绞线)100米。以太网集线器或以太网交换机位于中间连接所有节点。

FOIRL ──光纤中继器链路。光纤以太网络原始版本。

10BASE-F ── 10Mbps以太网光纤标准通称,2公里。只有10BASE-FL应用比较广泛。

10BASE-FL ── FOIRL标准一种升级。

10BASE-FB ──用于连接多个Hub或者交换机的骨干网技术,已废弃。

10BASE-FP ──无中继被动星型网,没有实际应用的案例。

100Mbps以太网(快速以太网)[编辑]

参见:百兆以太网

快速以太网(Fast Ethernet)为IEEE在1995年发表的网络标准,能提供达100Mbps的传输速度。[2]

100BASE-T -- 下面三个100 Mbit/s双绞线标准通称,最远100米。

100BASE-TX -- 类似于星型结构的10BASE-T。使用2对电缆,但是需要5类电缆以达到100Mbit/s。

100BASE-T4 -- 使用3类电缆,使用所有4对线,半双工。由于5类线普及,已废弃。

100BASE-T2 -- 无产品。使用3类电缆。支持全双工使用2对线,功能等效100BASE-TX,但支持旧电缆。

100BASE-FX -- 使用多模光纤,最远支持400米,半双工连接 (保证冲突检测),2km全双工。

100VG AnyLAN -- 只有惠普支持,VG最早出现在市场上。需要4对三类电缆。也有人怀疑VG不是以太网。

苹果的千兆以太网络接口

1Gbps以太网[编辑]

参见:吉比特以太网

1000BASE-SX的光信号与电气信号转换器

1000BASE-T -- 1 Gbit/s介质超五类双绞线或6类双绞线。

1000BASE-SX -- 1 Gbit/s多模光纤(取决于频率以及光纤半径,使用多模光纤时最长距离在220M至550M之间)。[3]

1000BASE-LX -- 1 Gbit/s多模光纤(小于550M)、单模光纤(小于5000M)。[4]

1000BASE-LX10 -- 1 Gbit/s单模光纤(小于10KM)。长距离方案

1000BASE-LHX --1 Gbit/s单模光纤(10KM至40KM)。长距离方案

1000BASE-ZX --1 Gbit/s单模光纤(40KM至70KM)。长距离方案

1000BASE-CX -- 铜缆上达到1Gbps的短距离(小于25 m)方案。早于1000BASE-T,已废弃。

10Gbps以太网[编辑]

参见:10吉比特以太网

新的万兆以太网标准包含7种不同类型,分别适用于局域网、城域网和广域网。目前使用附加标准IEEE 802.3ae,将来会合并进IEEE 802.3标准。

10GBASE-CX4 -- 短距离铜缆方案用于InfiniBand 4x连接器和CX4电缆,最大长度15米。

10GBASE-SR -- 用于短距离多模光纤,根据电缆类型能达到26-82米,使用新型2GHz多模光纤可以达到300米。

10GBASE-LX4 -- 使用波分复用支持多模光纤240-300米,单模光纤超过10公里。

10GBASE-LR和10GBASE-ER -- 通过单模光纤分别支持10公里和40公里

10GBASE-SW、10GBASE-LW、10GBASE-EW。用于广域网PHY、OC-192 / STM-64 同步光纤网/SDH设备。物理层分别对应10GBASE-SR、10GBASE-LR和10GBASE-ER,因此使用相同光纤支持距离也一致。(无广域网PHY标准)

10GBASE-T -- 使用屏蔽或非屏蔽双绞线,使用CAT-6A类线至少支持100米传输。CAT-6类线也在较短的距离上支持10GBASE-T。

100Gbps以太网[编辑]

参见:100吉比特以太网

新的40G/100G以太网标准在2010年中制定完成,包含若干种不同的节制类型。目前使用附加标准IEEE 802.3ba。

40GBASE-KR4 -- 背板方案,最少距离1米。

40GBASE-CR4 / 100GBASE-CR10 -- 短距离铜缆方案,最大长度大约7米。

40GBASE-SR4 / 100GBASE-SR10 -- 用于短距离多模光纤,长度至少在100米以上。

40GBASE-LR4 / 100GBASE-LR10 -- 使用单模光纤,距离超过10公里。

100GBASE-ER4 -- 使用单模光纤,距离超过40公里。

参考文献[编辑]

^ Wendell Odom. CCENT/CCNA ICND1 100-105 Official Cert Guide. Cisco Press. 2016: 43页. ISBN 978-1-58720-580-4. 

^ 2.0 2.1 Internet协议观念与实现ISBN 9577177069

^ IEEE 802.3-2008 Section 3 Table 38-2 p.109

^ IEEE 802.3-2008 Section 3 Table 38-6 p.111

参见[编辑]

5类双绞线

RJ45

Power over Ethernet

MII and PHY

网络唤醒

1G以太网

10G以太网

100G以太网

1000G以太网

虚拟局域网

生成树协议

通讯

Internet

以太网帧格式

外部链接[编辑]

IEEE 802.3 2002年标准(页面存档备份,存于互联网档案馆)

万兆以太网(页面存档备份,存于互联网档案馆)

以太网帧格式(页面存档备份,存于互联网档案馆)

万兆IP以太网白皮书

千兆以太网(1000BaseT)(页面存档备份,存于互联网档案馆)

查论编局域网技术之以太网家族速度

10Mbit/s

双绞线以太网

100Mbit/s

1Gbit/s

2.5和5Gbit/s

10Gbit/s

25和50Gbit/s(英语:25 Gigabit Ethernet)

40和100Gbit/s

200Gbit/s和400Gbit/s

常规

IEEE 802.3

以太网物理层(英语:Ethernet physical layer)

自动协商(英语:Autonegotiation)

以太网供电

以太类型

以太网联盟(英语:Ethernet Alliance)

流控制

巨型帧

历史

CSMA/CD

StarLAN(英语:StarLAN)

10BROAD36(英语:10BROAD36)

10BASE-FB(英语:10BASE-FB)

10BASE-FL(英语:10BASE-FL)

10BASE5(英语:10BASE5)

10BASE2(英语:10BASE2)

100BaseVG(英语:100BaseVG)

LattisNet(英语:LattisNet)

长距离(英语:Long Reach Ethernet)

应用程序

音频(英语:Audio over Ethernet)

运营商(英语:Carrier Ethernet)

数据中心(英语:Data center bridging)

高能效以太网

第一英里(英语:Ethernet in the first mile)

10G-EPON(英语:10G-EPON)

工业以太网

以太网供电

同步(英语:Synchronous Ethernet)

收发器

MAU(英语:Medium Attachment Unit)

GBIC

SFP

XENPAK

X2

XFP

SFP+

QSFP(英语:QSFP)

CFP(英语:C Form-factor Pluggable)

接口

AUI(英语:Attachment Unit Interface)

MDI

MII

GMII

XGMII

XAUI

分类

维基共享

查论编互联网访问有线网络

线缆(英语:Cable Internet access)

拨号

DOCSIS

DSL

以太网

FTTx

G.hn(英语:G.hn)

HD-PLC

HomePlug

HomePNA(英语:HomePNA)

IEEE 1901(英语:IEEE 1901)

ISDN

MoCA(英语:Multimedia over Coax Alliance)

PON

电力线

宽带

无线个人局域网

蓝牙

Li-Fi

无线USB

无线局域网

Wi-Fi

无线广域网

DECT

EV-DO

GPRS

HSPA

HSPA+

iBurst(英语:iBurst)

LTE

MMDS

Muni Wi-Fi

WiMAX

WiBro

卫星上网

查论编IEEE标准当前标准

488

754

Revision(英语:IEEE 754 revision)

829

830

1003

1014-1987(英语:VMEbus)

1016

1076

1149.1

1164(英语:IEEE 1164)

1219

1233

1275(英语:Open Firmware)

1278(英语:Distributed Interactive Simulation)

1284(英语:IEEE 1284)

1355(英语:IEEE 1355)

1364

1394

1451(英语:IEEE 1451)

1471(英语:IEEE 1471)

1491

1516(英语:High-level architecture (simulation))

1541-2002

1547(英语:IEEE 1547)

1584(英语:IEEE 1584)

1588(英语:Precision Time Protocol)

1596(英语:Scalable Coherent Interface)

1603(英语:IEEE 1603)

1613(英语:IEEE 1613)

1667(英语:IEEE 1667)

1675(英语:IEEE 1675-2008)

1685(英语:IP-XACT)

1800

1801(英语:Unified Power Format)

1900(英语:DySPAN)

1901(英语:IEEE 1901)

1902(英语:RuBee)

11073(英语:ISO/IEEE 11073)

12207(英语:IEEE 12207)

2030(英语:IEEE 2030)

14764

16085

16326

42010(英语:ISO/IEC 42010)

802系列802.1

p

Q

Qat(英语:Stream Reservation Protocol)

Qay(英语:Provider Backbone Bridge Traffic Engineering)

X

ad

AE(英语:IEEE 802.1AE)

ag(英语:IEEE 802.1ag)

ah(英语:IEEE 802.1ah-2008)

ak(英语:Multiple Registration Protocol)

aq

ax

802.11

Legacy

a

b

d(英语:IEEE 802.11d-2001)

e(英语:IEEE 802.11e-2005)

f(英语:Inter-Access Point Protocol)

g

h(英语:IEEE 802.11h-2003)

i(英语:IEEE 802.11i-2004)

j(英语:IEEE 802.11j-2004)

k(英语:IEEE 802.11k-2008)

n (Wi-Fi 4)

p

r

s

u(英语:IEEE 802.11u)

v(英语:IEEE 802.11v)

w(英语:IEEE 802.11w-2009)

y(英语:IEEE 802.11y-2008)

ac (Wi-Fi 5)

ad (WiGig)

af

ah

ai

aj

aq

ax (Wi-Fi 6)

ay (WiGig 2)

be (Wi-Fi 7)

.2

.3

.4

.5

.6(英语:IEEE 802.6)

.7(英语:IEEE 802.7)

.8

.9(英语:IEEE 802.9)

.10(英语:IEEE 802.10)

.12(英语:IEEE 802.12)

.15

.15.4(英语:IEEE 802.15.4)

.15.4a(英语:IEEE 802.15.4a)

.16

.18(英语:IEEE 802.18)

.20(英语:IEEE 802.20)

.21(英语:IEEE 802.21)

.22建议标准

P1363(英语:IEEE P1363)

P1619

P1823(英语:Universal Power Adapter for Mobile Devices)

过时标准

754-1985(英语:IEEE 754-1985)

854-1987(英语:IEEE 854-1987)

另见

IEEE标准协会

Category:IEEE标准

查论编电子计算机基本部件输入设备

键盘

数字键盘

影像扫描仪

显卡

图形处理器

麦克风

定点设备

数码绘图板

游戏控制器

光笔(英语:Light pen)

鼠标

光学

指点杆

触摸板

触摸屏

轨迹球

盲文显示机

声卡

声音处理器(英语:Sound chip)

摄像头

虚拟(英语:Softcam)

输出设备

显示器

屏幕

盲文显示机

打印机

绘图仪(英语:Plotter)

扬声器(英语:Computer speakers)

声卡

显卡

移动存储

磁盘组(英语:Disk pack)

软盘

光盘

CD

DVD

BD

闪存

存储卡

闪存盘

机箱

中央处理器

微处理器

主板

存储器

随机存取

BIOS

数据存贮器

硬盘

固态硬盘

混合固态硬盘

电源供应器

开关模式电源

金属氧化物半导体场效晶体管

功率

电压调节模块

网卡

传真调制解调器(英语:Fax modem)

扩展卡

接口(英语:Computer port (hardware))

以太网

FireWire

并行

序列

PS/2

USB

Thunderbolt

DisplayPort/HDMI/DVI/VGA

SATA

TRS

规范控制

AAT: 300266018

GND: 4127501-9

J9U: 987007555681905171

LCCN: sh85045087

取自“https://zh.wikipedia.org/w/index.php?title=以太网&oldid=81300354”

分类:​以太网路计算机总线隐藏分类:​含有英语的条目自2014年12月有非常模棱两可或者十分空泛语句的条目自2024年2月有未列明来源语句的条目包含AAT标识符的维基百科条目包含GND标识符的维基百科条目包含J9U标识符的维基百科条目包含LCCN标识符的维基百科条目

本页面最后修订于2024年2月19日 (星期一) 10:07。

本站的全部文字在知识共享 署名-相同方式共享 4.0协议之条款下提供,附加条款亦可能应用。(请参阅使用条款)

Wikipedia®和维基百科标志是维基媒体基金会的注册商标;维基™是维基媒体基金会的商标。

维基媒体基金会是按美国国内税收法501(c)(3)登记的非营利慈善机构。

隐私政策

关于维基百科

免责声明

行为准则

开发者

统计

Cookie声明

手机版视图

开关有限宽度模式